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Abstract 

This study introduces a novel decision-making framework, termed Dual-Consensus Decision for 

Decision Making (DCD-DM), that unifies Local Union of Binary Intersections (LUBI) and Global 

External Intersection (GEI) strategies to support robust consensus-based reasoning. The model is 

further extended through the incorporation of soft-fuzzy set theory, enabling decision mechanisms to 

account for uncertainty and partial agreement among criteria. Stepwise formulations are presented to 

demonstrate how weighted aggregation and union-based logic can refine decision outcomes in 

complex environments. The proposed approach is benchmarked through illustrative examples, 

revealing its capability to balance strict consensus and flexible compromise. This framework opens 

pathways for scalable and intelligent multi-criteria decision systems in uncertain domains. 

Keywords: Dual-Consensus Decision Making, Soft-Fuzzy Sets, Binary Intersection, and-product, 

LUBI, GEI, Multi-Criteria Decision Making, Uncertainty Modelling. 

 

1. Introduction  

 The complexity of modern systems and decision-making criteria in ambiguous environments has led to the 

emergence of mathematical tools capable of dealing with uncertainty. Soft set theory [1], proposed by D. 

Molodtsov in 1999, is at the forefront of robust mathematical frameworks for representing uncertain 

knowledge. It has proven effective in addressing the shortcomings of other theories dealing with uncertainty, 

such as probability theory and  fuzzy and rough set theories [2, 3]. Besides the theoretical developments of 

soft sets that have been extensively studied in the literature [4-9] researchers have developed several soft set-

based methodologies to solve decision-making problems as in [6,10-12]. Traditional soft set models offer 

flexibility by allowing decisions to be parameterized. Decision making in multi-criteria environments often 

demands a balance between local agreements among parameters and global consensus across decision 

makers. Classical decision-making approaches may fail to accommodate partial agreement, uncertainty, or 

conflicting evaluations, especially when strict intersection-based criteria are applied. Which often produces 

mailto:mnalmohammed41@gmail.com


THE ACADEMIC OPEN JOURNAL OF APPLIED AND HUMAN SCIENCES (2709-3344)          vol (6), issue (1) 2025 
 
 

25 

empty decision sets, or when dealing with binary and fuzzy information simultaneously. This creates a need 

for a more flexible and expressive decision model capable of integrating both hard and soft consensus 

mechanisms. 

 This paper proposes a novel decision-making framework that combines binary logic and soft-fuzzy set 

theory to address challenges in multi-criteria environments characterized by uncertainty and partial 

agreement. Specifically, it introduces a Dual-Consensus Decision Making (DCD-DM) model that integrates 

the Local Union of Binary Intersections (LUBI) and the Global External Intersection (GEI) to capture both 

localized and global agreement among evaluators. The framework is extended with fuzzy-soft logic to enable 

graded outputs and confidence-based ranking, enhancing decision robustness in complex scenarios. 

 The paper is organized as follows: Preliminaries on soft sets, fuzzy sets, and soft-fuzzy theory are introduced 

in section 2. Section 3 presents the core dual-consensus algorithm and its underlying mathematical structure. 

Additionally, a comparative example is provided to demonstrate the practical implementation of the model 

and evaluate its effectiveness in comparison with previous methods. Section 4 explores the main 

mathematical properties of the DCD operator, including symmetry and De Morgan’s laws, with formal 

proofs. Section 5 presents special cases of the DCD operator and introduces a weighted and extension to 

handle cases of strict or partial consensus. The section includes techniques for generating more inclusive 

decisions. Section 6 explores a fuzzy-soft scoring mechanism for ranking decisions. Finally, section 7 

concludes the paper and outlines directions for future research. 

2. Preliminaries  

To understand the mechanism of the proposed algorithm, it is first necessary to clarify some basic concepts 

on which the adopted methodology is based. 

2.1 Soft Sets [1] 

Let 𝑈 be a universal set and 𝐸 a set of parameters. A soft set over 𝑈 is a pair (𝐹, 𝐴), or simply 𝐹𝐴,  where 

𝐴 ⊆ 𝐸 and 𝐹: 𝐴 ⟶ 𝑃(𝑈). For each parameter 𝑒 ∈ 𝐴, the mapping 𝐹 assigns a subset 𝐹(𝑒) ⊆ 𝑈.  

2.2 Fuzzy Sets [2] 

A fuzzy set 𝜇 over 𝑈 is defined as 𝜇: 𝑈 ⟶ [0,1], assigning a degree of membership to each element. 

2.3  Soft Fuzzy Sets [13] 

Let 𝑈 be a universal set,  𝐸 a set of parameters, and 𝐴  ⊆  𝐸. A pair (𝐹, 𝐴) is called a soft fuzzy set over 𝑈 

if:  

i. There exists a fuzzy relation  

𝜇𝐹: 𝐴 ×  𝑈 →  [0,1], 

 represent degrees of satisfaction for each element ℎ ∈ 𝑈 with respect to each element 𝑒 ∈ 𝐴. 
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ii. The mapping 𝐹: 𝐴 →  𝑃(𝑈) defined by via the α-cut of 𝜇𝐹 i.e.,  

𝐹(𝑒) = {ℎ ∈ 𝑈: 𝜇𝐹(𝑒, ℎ) ≥ 𝛼 , 𝛼 ∈ [0,1]}. 

2.4 And-Product [6] 

Let (𝐹, 𝐴) and (𝐺, 𝐵) be two soft sets defined over a universe 𝑈 with corresponding parameter sets 𝐸 . 

Then and-product of (𝐹, 𝐴) and (𝐺, 𝐵) denoted by  (𝐹, 𝐴) ∧ (𝐺, 𝐵) = (𝐻, 𝐴 × 𝐵), where: 

𝐻(𝑥, 𝑦) = 𝐹(𝑥) ∩ 𝐺(𝑦) ∀ (𝑥, 𝑦) ∈ 𝐴 × 𝐵. 

3. Dual-Consensus Decision (DCD-DM) Model 

This section introduces the Dual Consensus Decision (DCD) method, which builds on the “and-product” 

operation to support intersection-based decision-making. The and-product is used to generate pairwise 

intersections that underpin the Local Union of Binary Intersections (LUBI) and the Global External 

Intersection (GEI), enabling the identification of shared and distinct elements across decision matrices and 

forming the core of the DCD framework.  

3.1 Basic Definitions   

Definition 3.1 Local Union of Binary Intersections  (𝐋𝐔𝐁𝐈𝒊𝒏𝒕)  

Let (𝐹, 𝐴) and (𝐺, 𝐵) be two non-null soft sets over the universe 𝑈, with approximate functions 𝐹: 𝐴 →

𝑃(𝑈) and 𝐺: 𝐵 → 𝑃(𝑈), respectively. Then, the Local Union of Binary Intersections is defined as the union 

of all pairwise intersections 𝐹(𝑥) ∩ 𝐺(𝑦) for parameters 𝑥 and 𝑦 in the shared set 𝐴 ∩ 𝐵. Mathematically, 

this can be expressed as:  

LUBI𝑖𝑛𝑡 = ⋃ (𝐹(𝑥) ∩ 𝐺(𝑦)).

𝑥,𝑦∈𝐴∩𝐵

 

Definition 3.2 Global External Intersection (𝐆𝐄𝐈𝒊𝒏𝒕) 

Let (𝐹, 𝐴) and (𝐺, 𝐵) are two non-null soft sets over the universe 𝑈, with approximate functions  𝐹: 𝐴 →

𝑃(𝑈) and 𝐺: 𝐵 → 𝑃(𝑈) respectively. Then, the Global External Intersection is defined as the union of all 

pairwise intersections 𝐹(𝑥) ∩ 𝐺(𝑦) for parameters 𝑥 ∈ 𝐴  and 𝑦 ∈ 𝐵, where 𝑥  and 𝑦  are not shared 

between 𝐴 and 𝐵 (i.e., 𝑥, 𝑦 ∉ 𝐴 ∩ 𝐵). Mathematically, this can be expressed as: 

GEI𝑖𝑛𝑡 = ⋃ (𝐹(𝑥) ∩ 𝐺(𝑦))
𝑥∈𝐴,𝑦∈𝐵
𝑥,𝑦∉𝐴∩𝐵

. 

3.2 Dual Consensus Decision (DCD-DM) 

By using the definitions Local Union of Binary Intersections and Global External Intersection, a Dual 

Consensus Decision method is constructed by the following algorithm: 

Step 1: Input the soft sets (𝐹, 𝐴) and (𝐺, 𝐵). 
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Step 2: Find and-product of (𝐹, 𝐴) and (𝐺, 𝐵). 

Step 3: Find a Local Union of Binary Intersections - LUBI𝑖𝑛𝑡.  

Step 4: Find Global External Intersection – GEI𝑖𝑛𝑡. 

Step 5: Dual Consensus Decision (DCD-DM)  

The final decision is computed by intersecting LUBI𝑖𝑛𝑡 and GEI𝑖𝑛𝑡 i.e., 

DCD𝑖𝑛𝑡 = ⋃ (𝐹(𝑥) ∩ 𝐺(𝑦))

𝑥,𝑦∈𝐴∩𝐵

∩ ⋃ (𝐹(𝑥) ∩ 𝐺(𝑦)).
𝑥∈𝐴,𝑦∈𝐵
𝑥,𝑦∉𝐴∩𝐵

 

To illustrate the applicability of the proposed model, we consider a previously studied example (example 4 

in [6]). Reusing this example allows for a comparison between the proposed dual-consensus framework and 

prior decision-making techniques, as it enables the evaluation of results under identical conditions. 

Example 1: In this example the universal set 𝑈 = {ℎ1, ℎ2, ℎ3, … , ℎ48}, represents the full set of candidates 

under consideration. The evaluation parameters 𝐸 = {𝑒1, 𝑒2, 𝑒3, … , 𝑒7}, correspond to the parameters used 

by decision-makers to assess candidates. Two evaluators select subsets of these parameters, denoted by 𝐴 =

{𝑒1, 𝑒2, 𝑒4, 𝑒7} and 𝐵 = {𝑒1, 𝑒2, 𝑒5}, respectively. 

The soft sets are constructed, and there and-product are then computed 

(𝐹, 𝐴) =

{
 

 
(𝑒1, {ℎ4, ℎ7, ℎ13, ℎ21, ℎ28, ℎ31, ℎ32, ℎ36, ℎ39, ℎ41, ℎ43, ℎ44, ℎ49}),

(𝑒2, {ℎ1, ℎ3, ℎ13, ℎ18, ℎ19, ℎ21, ℎ22, ℎ24, ℎ28, ℎ32, ℎ36, ℎ42, ℎ44, ℎ46}),

(𝑒4, {ℎ2, ℎ3, ℎ13, ℎ15, ℎ18, ℎ23, ℎ25, ℎ28, ℎ30, ℎ33, ℎ36, ℎ38, ℎ42, ℎ43}),
(𝑒7, {ℎ1, ℎ5, ℎ12, ℎ13, ℎ17, ℎ20, ℎ24, ℎ28, ℎ29, ℎ34, ℎ36, ℎ41, ℎ45, ℎ47})}

 

 
 

(𝐺, 𝐵) = {

(𝑒1, {ℎ3, ℎ4, ℎ5, ℎ8, ℎ14, ℎ21, ℎ22, ℎ26, ℎ27, ℎ34, ℎ35, ℎ37, ℎ40, ℎ42, ℎ46}),
(𝑒2, {ℎ1, ℎ4, ℎ7, ℎ10, ℎ11, ℎ13, ℎ15, ℎ21, ℎ29, ℎ30, ℎ32, ℎ36, ℎ42, ℎ43, ℎ45}),
(𝑒5, {ℎ2, ℎ4, ℎ8, ℎ9, ℎ12, ℎ13, ℎ14, ℎ16, ℎ17, ℎ21, ℎ23, ℎ28, ℎ36, ℎ42, ℎ44})

} 

 and-product of (𝐹, 𝐴) and (𝐺, 𝐵) 

(𝐹, 𝐴) ∧ (𝐺, 𝐵)  =

{
 
 
 
 

 
 
 
 
((𝑒1, 𝑒1), {ℎ4, ℎ21}), ((𝑒1, 𝑒2), {ℎ4, ℎ7, ℎ13, ℎ21, ℎ32, ℎ36, ℎ43}),

((𝑒1, 𝑒5), {ℎ4, ℎ13, ℎ21, ℎ28, ℎ36, ℎ44}), ((𝑒2, 𝑒1) , {ℎ3, ℎ21,ℎ22,

ℎ42, ℎ46}), ((𝑒2, 𝑒2), {ℎ1, ℎ13, ℎ21, ℎ32, ℎ36, ℎ42}), ((𝑒2, 𝑒5), {ℎ13,

ℎ21, ℎ28, ℎ36, ℎ42, ℎ44}), ((𝑒4, 𝑒1), {ℎ3, ℎ42}), ((𝑒4, 𝑒2), {ℎ13,ℎ15,

ℎ30, ℎ36, ℎ42, ℎ43}), ((𝑒4, 𝑒5), {ℎ2, ℎ13, ℎ23, ℎ28, ℎ36, ℎ42}),

((𝑒7, 𝑒1), {ℎ5, ℎ34}), ((𝑒7, 𝑒2), {ℎ1, ℎ13, ℎ17, ℎ29, ℎ36, ℎ45})

((𝑒7, 𝑒5), {ℎ12, ℎ13, ℎ17, ℎ28, ℎ36}) }
 
 
 
 

 
 
 
 

. 

Subsequently, the Local and Global intersections are computed. 

a) Since 𝐴 = {𝑒1, 𝑒2, 𝑒4, 𝑒7}, and 𝐵 = {𝑒1, 𝑒2, 𝑒5} then 𝐴 ∩ 𝐵 = {𝑒1, 𝑒2}. For each parameter 𝑥 and 

𝑦 ∈ 𝐴 ∩ 𝐵,  calculate 𝐹(𝑥) ∩ 𝐺(𝑦): 
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𝐹(𝑒1) ∩ 𝐺(𝑒1) = {ℎ4, ℎ21} 

𝐹(𝑒1) ∩ 𝐺(𝑒2) = {ℎ4, ℎ7, ℎ13, ℎ21, ℎ32, ℎ36, ℎ43} 

𝐹(𝑒2) ∩ 𝐺(𝑒1) = {ℎ3, ℎ21, ℎ22, ℎ42, ℎ46} 

𝐹(𝑒2) ∩ 𝐺(𝑒2) = {ℎ1, ℎ13, ℎ21, ℎ32, ℎ36, ℎ42} 

Then  

LUBI𝑖𝑛𝑡 = ⋃ (𝐹(𝑥) ∩ 𝐺(𝑦))

𝑥,𝑦∈𝐴∩𝐵

 

                                      = {ℎ1, ℎ3, ℎ4, ℎ7, ℎ13, ℎ21, ℎ22, ℎ32, ℎ36, ℎ42, ℎ43, ℎ46} 

b) For each 𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 such that 𝑥, 𝑦 ∉ 𝐴 ∩ 𝐵, calculate 𝐹(𝑥) ∩ 𝐺(𝑦): 

𝐹(𝑒4) ∩ 𝐺(𝑒5) = {ℎ2, ℎ13, ℎ23, ℎ28, ℎ36, ℎ42} 

𝐹(𝑒7) ∩ 𝐺(𝑒5) = {ℎ12, ℎ13, ℎ17, ℎ28, ℎ36}. 

Then  

GEI𝑖𝑛𝑡 = ⋃ (𝐹(𝑥) ∩ 𝐺(𝑦))
𝑥∈𝐴,𝑦∈𝐵
𝑥,𝑦∉𝐴∩𝐵

= {ℎ2, ℎ12, ℎ13, ℎ17, ℎ23, ℎ28, ℎ36, ℎ42}. 

Finally, by combining the previous results, the Dual Consensus Decision (DCD-DM) is computed:  

DCD𝑖𝑛𝑡 = ⋃ (𝐹(𝑥) ∩ 𝐺(𝑦))

𝑥,𝑦∈𝐴∩𝐵

∩ ⋃ (𝐹(𝑥) ∩ 𝐺(𝑦))
𝑥∈𝐴,𝑦∈𝐵
𝑥,𝑦∉𝐴∩𝐵

 

={ℎ1, ℎ3, ℎ4, ℎ7, ℎ13, ℎ21, ℎ22, ℎ32, ℎ36, ℎ42, ℎ43, ℎ46} ∩ {ℎ2, ℎ12, ℎ13, ℎ17, ℎ23, ℎ28, ℎ36, ℎ42}                                                              

= {ℎ13, ℎ36, ℎ42}. 

3.3 Comparative Results and Implications for Decision-Making 

3.3.1 Compared Decision Sets 

Applying the Dual Consensus Decision method in the example provided leads to the following set of 

decisions  

DCD𝑖𝑛𝑡 = {ℎ13, ℎ36, ℎ42}. 

In contrast, N. Çağman et al. [6] obtains a wider set of decisions when applying uni–int decision 

making method. 

uni–int decision making = {ℎ4, ℎ13, ℎ21, ℎ36, ℎ42}. 

3.3.2 Key Observations 

a) Precision vs. Breadth: 
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i. DCD𝑖𝑛𝑡  method: Yields higher precision by integrating only the candidates that appear both in 

intersecting and non-overlapping parameter pairs. The use of both shared (LUBI𝑖𝑛𝑡) and external 

(GEI𝑖𝑛𝑡) consensus intersections increase the decision confidence. 

ii. uni–int method: Reflects a more inclusive approach by prioritizing union over intersection . 

b) Decision-Making Implications: 

i. Scores smaller than DCD𝑖𝑛𝑡 method indicate higher confidence in the selected candidates due to the 

prioritization of shared and distinct evaluators' perspectives . 

ii. uni–int method provides more alternatives that may be preferable when flexibility or 

expansion is required. 

4. Some Property 

Property 1: Symmetry of the Dual-Consensus Operator 

Let 𝐹𝐴 = (𝐹, 𝐴) and 𝐹𝐵 = (𝐺, 𝐵) be two soft sets over the universe 𝑈. The Dual-Consensus Decision-

DCD𝑖𝑛𝑡 operator, which integrates both the Local Union of Binary Intersections-LUBI𝑖𝑛𝑡 and the Global 

External Intersection-GEI𝑖𝑛𝑡, is symmetric with respect to its input soft sets. That is: 

DCD𝑖𝑛𝑡  (𝐹𝐴 ∧ 𝐹𝐵) = DCD𝑖𝑛𝑡  (𝐹𝐵 ∧ 𝐹𝐴). 

Proof: 

The proof follows directly from the commutativity of set intersection, since both LUBI𝑖𝑛𝑡 and GEI𝑖𝑛𝑡, are 

defined based on intersection operations. Therefore, swapping the input soft sets 𝐹𝐴 and 𝐹𝐵 does not affect 

the resulting decision set. 

Property 2: De Morgan’s Laws to 𝐃𝐂𝐃𝒊𝒏𝒕 

 Let 𝐹𝐴 = (𝐹, 𝐴) and 𝐹𝐵 = (𝐺, 𝐵) be two soft sets over the universe 𝑈. The complement of the Dual-

Consensus Decision DCD𝑖𝑛𝑡
𝑐  is given by: 

DCD𝑖𝑛𝑡
𝑐 = LUBI𝑖𝑛𝑡

𝑐 ∪ GEI𝑖𝑛𝑡
𝑐 . 

Here, the superscript 𝑐 denotes the classical complement in set theory. 

 Proof: 

Since  

 LUBI𝑖𝑛𝑡 = ⋃ (𝐹(𝑥) ∩ 𝐺(𝑦))

𝑥,𝑦∈𝐴∩𝐵

 

Then  
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LUBI𝑖𝑛𝑡
𝑐 = ( ⋃ (𝐹(𝑥) ∩ 𝐺(𝑦))

𝑥,𝑦∈𝐴∩𝐵

)

𝑐

= ⋂ (𝐹(𝑥) ∩ 𝐺(𝑦))
𝑐

𝑥,𝑦∈𝐴∩𝐵

 

= ⋂ 𝐹(𝑥)𝑐 ∪ 𝐺(𝑦)𝑐.

𝑥,𝑦∈𝐴∩𝐵

 

And   

GEI𝑖𝑛𝑡 = ⋃ (𝐹(𝑥) ∩ 𝐺(𝑦))
𝑥∈𝐴,𝑦∈𝐵
𝑥,𝑦∉𝐴∩𝐵

 

Then  

GEI𝑖𝑛𝑡
𝑐 =

(

 ⋃ (𝐹(𝑥) ∩ 𝐺(𝑦))
𝑥∈𝐴,𝑦∈𝐵
𝑥,𝑦∉𝐴∩𝐵 )

 

𝑐

= ⋂ (𝐹(𝑥) ∩ 𝐺(𝑦))
𝑐

𝑥∈𝐴,𝑦∈𝐵
𝑥,𝑦∉𝐴∩𝐵

= ⋂ 𝐹(𝑥)𝑐 ∪ 𝐺(𝑦)𝑐.
𝑥∈𝐴,𝑦∈𝐵
𝑥,𝑦∉𝐴∩𝐵

 

Now  

DCD𝑖𝑛𝑡 = ⋃ (𝐹(𝑥) ∩ 𝐺(𝑦))

𝑥,𝑦∈𝐴∩𝐵

∩ ⋃ (𝐹(𝑥) ∩ 𝐺(𝑦))
𝑥∈𝐴,𝑦∈𝐵
𝑥,𝑦∉𝐴∩𝐵

 

The complement of DCD𝑖𝑛𝑡 defined By 

DCD𝑖𝑛𝑡
𝑐 =

(

 ⋃ (𝐹(𝑥) ∩ 𝐺(𝑦))

𝑥,𝑦∈𝐴∩𝐵

∩ ⋃ (𝐹(𝑥) ∩ 𝐺(𝑦))
𝑥∈𝐴,𝑦∈𝐵
𝑥,𝑦∉𝐴∩𝐵 )

 

𝒄

 

 Applying De Morgan’s laws to the definition of DCD𝑖𝑛𝑡
𝑐 , results in: 

DCD𝑖𝑛𝑡
𝑐 = ( ⋃ (𝐹(𝑥) ∩ 𝐺(𝑦))

𝑥,𝑦∈𝐴∩𝐵

)

𝑐

∪

(

 ⋃ (𝐹(𝑥) ∩ 𝐺(𝑦))
𝑥∈𝐴,𝑦∈𝐵
𝑥,𝑦∉𝐴∩𝐵 )

 

𝑐

 

= ⋂ (𝐹(𝑥) ∩ 𝐺(𝑦))
𝑐

𝑥,𝑦∈𝐴∩𝐵

∪ ⋂ (𝐹(𝑥) ∩ 𝐺(𝑦))
𝑐

𝑥∈𝐴,𝑦∈𝐵
𝑥,𝑦∉𝐴∩𝐵

 

= ⋂ 𝐹(𝑥)𝑐 ∪ 𝐺(𝑦)𝑐

𝑥,𝑦∈𝐴∩𝐵

∪ ⋂ 𝐹(𝑥)𝑐 ∪ 𝐺(𝑦)𝑐

𝑥∈𝐴,𝑦∈𝐵
𝑥,𝑦∉𝐴∩𝐵

 

= LUBI𝑖𝑛𝑡
𝑐 ∪ GEI𝑖𝑛𝑡

𝑐 . 
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5. Special Cases of Dual-Consensus 

5.1 Generalization using union 𝐃𝐂𝐃𝒖𝒏𝒊:  In certain cases, expanding the set of viable alternatives may be 

beneficial. This can be accomplished by substituting the intersection operation with a union, thereby 

generating more inclusive decision outcomes. Such a modification increases the model’s adaptability to 

diverse and complex scenarios. When applied to the previous example, using the union in place of the 

intersection results in an expanded decision set. 

DCD𝑢𝑛𝑖 = ⋃ (𝐹(𝑥) ∩ 𝐺(𝑦))

𝑥,𝑦∈𝐴∩𝐵

∪ ⋃ (𝐹(𝑥) ∩ 𝐺(𝑦))
𝑥∈𝐴,𝑦∈𝐵
𝑥,𝑦∉𝐴∩𝐵

 

  = {ℎ1, ℎ3, ℎ4, ℎ7, ℎ13, ℎ21, ℎ22, ℎ32, ℎ36, ℎ42, ℎ43, ℎ46} ∪ {ℎ2, ℎ12, ℎ13, ℎ17,ℎ23, ℎ28, ℎ36, ℎ42} 

                     = {ℎ1, ℎ2, ℎ3, ℎ4, ℎ7, ℎ12, ℎ13, ℎ17,ℎ21, ℎ22, ℎ23, ℎ28, ℎ32, ℎ36, ℎ42, ℎ43, ℎ46}. 

Thus, obtain an expanded output is obtained compared to the output obtained using intersection alone, 

reflecting the model's flexibility in including more alternatives in the decision-making process. 

Remark 1: it can be noted that 

DCD𝑖𝑛𝑡 ⊆ DCD𝑢𝑛𝑖 . 

This results from the fact that the intersection of two sets is a subset of their union. 

5.2 Handling the Case When 𝐃𝐂𝐃𝒊𝒏𝒕 = ∅ 

When applying the Dual Consensus Decision (𝐷𝐶𝐷𝑖𝑛𝑡) method, it's possible that: 

• 𝐿𝑈𝐵𝐼𝑖𝑛𝑡 is empty, or 

• 𝐺𝐸𝐼𝑖𝑛𝑡 is empty, or 

• Both are empty. 

In such cases, the 𝐷𝐶𝐷𝑖𝑛𝑡 result becomes empty, which may not be practical in decision-making scenarios. 

Although it is mathematically valid. This indicates no candidates satisfy consensus under both shared and 

distinct parameters, possibly due to evaluator disagreement, strict criteria, or poorly aligned parameter sets. 

To handle this, one may: 

1- Use fallback methods like the more inclusive DCD𝑢𝑛𝑖 or uni–int. 

2- Reassess parameters 𝐴 and 𝐵 to improve overlap or expand evaluator input. 

3- Partial 𝑫𝑪𝑫𝒊𝒏𝒕 if only one of 𝐿𝑈𝐵𝐼𝑖𝑛𝑡 or 𝐺𝐸𝐼𝑖𝑛𝑡 is empty: Consider using the non- empty one as a 

weakened decision, e.g.: 

𝐷𝐶𝐷𝑖𝑛𝑡 = 𝐿𝑈𝐵𝐼𝑖𝑛𝑡 or 𝐺𝐸𝐼𝑖𝑛𝑡  (fallback mode) 

4- Consensus Decision Method (𝑾−𝑫𝑪𝑫𝒊𝒏𝒕) 
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The weighted Dual-Consensus Decision method with intersection-based logic (𝑊 −𝐷𝐶𝐷𝑖𝑛𝑡) enables partial 

agreement between the Local Union of Binary Intersections (𝐿𝑈𝐵𝐼𝑖𝑛𝑡) and the Global External Intersection 

(𝐺𝐸𝐼𝑖𝑛𝑡 ). Instead of requiring full consensus, this method assigns scores to candidates based on their 

presence in these intersected sets, allowing for a more flexible and inclusive decision-making process. 

Steps of the 𝑾−𝑫𝑪𝑫𝒊𝒏𝒕 Algorithm: Let (𝐹, 𝐴) and (𝐺, 𝐵) be two soft sets over universe 𝑈: 

Step 1: Compute 𝐿𝑈𝐵𝐼𝑖𝑛𝑡 and 𝐺𝐸𝐼𝑖𝑛𝑡 int as in the original 𝐷𝐶𝐷𝑖𝑛𝑡 method. 

Step 2: Create a combined list of candidates appearing in either 𝐿𝑈𝐵𝐼𝑖𝑛𝑡 or 𝐺𝐸𝐼𝑖𝑛𝑡. 

Step 3: Assign a score to each candidate ℎ𝑖 ∈ 𝑈 as follows: 

𝑆𝑐𝑜𝑟𝑒(ℎ𝑖) = {

2       𝑖𝑓ℎ𝑖 ∈ 𝐿𝑈𝐵𝐼𝑖𝑛𝑡  ∩  𝐺𝐸𝐼𝑖𝑛𝑡                      
1       𝑖𝑓ℎ𝑖 ∈ 𝐿𝑈𝐵𝐼𝑖𝑛𝑡  ∪  𝐺𝐸𝐼𝑖𝑛𝑡, ℎ𝑖 ∉ 𝑏𝑜𝑡ℎ .
0       𝑖𝑓ℎ𝑖 ∉ 𝐿𝑈𝐵𝐼𝑖𝑛𝑡 𝑎𝑛𝑑 ℎ𝑖 ∉ 𝐺𝐸𝐼𝑖𝑛𝑡        

 

Step 4: Compute weight 𝑤ℎ𝑖  of element ℎ𝑖 such that the weight 𝑤ℎ𝑖 defined by the ratio between of the 

number of parameter pairs (𝑥, 𝑦) where ℎ𝑖 appears in 𝐹(𝑥) ∩ 𝐺(𝑦) to the total number of pairs (𝑥, 𝑦) for 

all 𝑥 and 𝑦 ∈ 𝐴 ∪ 𝐵. Mathematically: 

𝑤ℎ𝑖 =
|{(𝑥, 𝑦)  ∈ A × B: ℎ𝑖 ∈ 𝐹(𝑥) ∩ 𝐺(𝑦)}|

|{(𝑥, 𝑦)  ∈ A × B}|
. 

Where |∙| denotes set cardinality (number of elements).  

Step 5: Compute 𝑤ℎ𝑖 . 𝑆𝑐𝑜𝑟𝑒(ℎ𝑖) for all ℎ𝑖 . 

Step 6: Set a threshold 𝜃 ∈ [0,2] to select candidates. (𝜃 may be determined by domain experts, or set 

according to the specific objectives and criteria of stakeholders (e.g., companies or decision-makers)). 

Step 7: The final decision set (𝑊 −𝐷𝐶𝐷𝑖𝑛𝑡) consists of all candidates with scores equal to or above the 

threshold 𝜃. 

Referring back to Example 1, there is 

𝐿𝑈𝐵𝐼𝑖𝑛𝑡 = {ℎ1, ℎ3, ℎ4, ℎ7, ℎ13, ℎ21, ℎ22, ℎ32, ℎ36, ℎ42, ℎ43, ℎ46} 

𝐺𝐸𝐼𝑖𝑛𝑡 = {ℎ2, ℎ12, ℎ13, ℎ17,ℎ23, ℎ28, ℎ36, ℎ42} 

Subsequently, score each candidate is 

Candidate 𝐋𝐔𝐁𝐈𝒊𝒏𝒕 𝑮𝑬𝑰𝒊𝒏𝒕 Score 

ℎ13 Yes yes 2 

ℎ36 Yes yes 2 
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Candidate 𝐋𝐔𝐁𝐈𝒊𝒏𝒕 𝑮𝑬𝑰𝒊𝒏𝒕 Score 

ℎ42 Yes yes 2 

ℎ1, ℎ3, ℎ4, ℎ7, ℎ21, ℎ22, ℎ32, ℎ43, ℎ46 Yes No 1 

ℎ2, ℎ12, ℎ17,ℎ23, ℎ28 No yes 1 

Next, the weight 𝑤ℎ𝑖 of each element ℎ𝑖 is computed. For example, if 𝑖 = 1,  

o There are 2 pairs where ℎ1 appears in the intersection i.e., 

|{(𝑥, 𝑦)  ∈ A × B: ℎ1 ∈ 𝐹(𝑥) ∩ 𝐺(𝑦)}| = 2. 

o There are 12 pairs with intersections i.e., |{(𝑥, 𝑦)  ∈ A × B}| = 12. 

Then  

𝑤ℎ1 =
2

12
= 0.16. 

Similarly, for any i the weight 𝑤ℎ𝑖 of ℎ𝑖 is determined using the same method. Accordingly, 

𝑤ℎ2 =
1

12
= 0.08, 𝑤ℎ3 =

2

12
= 0.16,𝑤ℎ4 =

3

12
= 0.25,𝑤ℎ7 =

1

12
= 0.08, 𝑤ℎ12 =

1

12
= 0.08,𝑤ℎ13 =

8

12
= 0.66,𝑤ℎ17 =

2

12
= 0.16,𝑤ℎ21 =

6

12
= 0.50,𝑤ℎ22 =

1

12
= 0.08,𝑤ℎ23 =

1

12
= 0.08,𝑤ℎ28 =

4

12
=

0.33,𝑤ℎ32 =
2

12
= 0.16,𝑤ℎ36 =

8

12
= 0.66,𝑤ℎ42 =

6

12
= 0.50,𝑤ℎ43 =

2

12
= 0.16,𝑤ℎ46 =

1

12
= 0.08. 

Then, 𝑤ℎ𝑖 . 𝑆𝑐𝑜𝑟𝑒(ℎ𝑖) is computed for all ℎ𝑖. 

Candidate 𝒘𝒉𝒊 𝑺𝒄𝒐𝒓𝒆(𝒉𝒊) 𝒘𝒉𝒊 . 𝑺𝒄𝒐𝒓𝒆(𝒉𝒊) 

ℎ13, ℎ36 0.66 2 0.66 × 2 = 1.32 

ℎ42 0.50 2 0.50 × 2 = 1 

ℎ21 0.50 1 0.50 × 1 = 0.50 

ℎ28 0.33 1 0.33 × 1 = 0.33 

ℎ4 0.25 1 0.25 × 1 = 0.25 

ℎ1, ℎ2, ℎ3, ℎ17, ℎ32, ℎ43 0.16 1 0.16 × 1 = 0.16 

ℎ7, ℎ12, ℎ22, ℎ23, ℎ46 0.08 1 0.08 × 1 = 0.08 
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Next, set 𝜃 = 0.5 as the threshold. Consequently, the decision set consists of all elements ℎ𝑖  such that 

𝑤ℎ𝑖 . 𝑆𝑐𝑜𝑟𝑒(ℎ𝑖) ≥ 0.5. Therefore, 

𝑊 −𝐷𝐶𝐷𝑖𝑛𝑡 = { ℎ₁₃, ℎ₂₁, ℎ₃₆, ℎ₄₂} 

This method prevents the decision from being empty and provides graded, confidence-aware outputs. 

Introduce weights or thresholds to soften the strict intersection rule in the DCD method. Instead of requiring 

elements to exist in all relevant intersections (crisp logic), allow partial membership or agreement turning the 

model from crisp to fuzzy or graded. This makes the method more flexible and tolerant to minor 

disagreements, especially useful when strict consensus leads to an empty decision set. 

6. Introducing Weights and Fuzzy Relaxation to DCD-DM: Toward a Fuzzy-Soft Decision 

The classical DCD-DM framework requires strict agreement across decision makers, meaning alternatives 

must meet both local and global consensus conditions. This strictness can lead to no decisions when 

evaluations conflict or are incomplete. To improve this, fuzzy logic is integrated into the soft set structure, 

allowing partial agreement through weights and confidence levels. This changes rigid yes/no decisions into 

flexible confidence scores, creating a more adaptable and robust decision-making process under uncertainty. 

This soft-fuzzy extension preserves the foundational logic of DCD-DM while enabling nuanced decision 

aggregation, making it more suitable for complex, real-world decision-making environments where ambiguity 

and partial consensus are common. 

Remark 2: A soft fuzzy set is a mathematical structure that integrates the concepts of fuzzy sets and soft 

sets by defining a fuzzy relation between a universal set 𝑈 and a parameter set 𝐸. Detailed discussions can 

be found in [13]. 

6.1 Soft Fuzzy Sets and Relaxed DCD  

Let (𝐹, 𝐴) and (𝐺, 𝐵) be two soft fuzzy sets over universe 𝑈 with parameter sets 𝐴 and 𝐵 ⊆  𝐸. For each 

mapping 𝐹: 𝐴 →  𝑃(𝑈), 𝐺: 𝐵 →  𝑃(𝑈),  The associated fuzzy relation is defined as a mapping: 

𝜇𝐹: 𝐴 ×  𝑈 →  [0,1],    𝜇𝐺: 𝐵 ×  𝑈 →  [0,1]. 

These represent degrees of satisfaction for each element ℎ𝑖 ∈ 𝑈 with respect to each parameter 𝑒𝑗 ∈ 𝐴 ∪ 𝐵. 

Instead of computing crisp intersections like: 

DCD𝑖𝑛𝑡 = ⋃ (𝐹(𝑥) ∩ 𝐺(𝑦))

𝑥,𝑦∈𝐴∩𝐵

∩ ⋃ (𝐹(𝑥) ∩ 𝐺(𝑦))
𝑥∈𝐴,𝑦∈𝐵
𝑥,𝑦∉𝐴∩𝐵

 

A fuzzy consensus degree 𝛿(ℎ𝑖) ∈ [0,1] is defined for each object ℎ𝑖 ∈ 𝑈, and computed as: 

𝛿(ℎ𝑖) = 𝜇𝐃𝐂𝐃𝒊𝒏𝒕(ℎ𝑖) =  𝑤1 · 𝜇𝐿𝑈𝐵𝐼(ℎ𝑖) + 𝑤2 · 𝜇𝐺𝐸𝐼(ℎ𝑖), 𝑤₁ +  𝑤₂ =  1. 
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This allows ranking of objects based on their fuzzy consensus scores. 

Where: 

a) 𝑤₁,𝑤₂ ∈  [0,1]:  Are weights reflecting the importance of local ( LUBI𝑖𝑛𝑡 ) and global (GEI𝑖𝑛𝑡 ) 

consensus. 

b)  𝜇𝐿𝑈𝐵𝐼(ℎ𝑖): Fuzzy degree of membership in LUBI𝑖𝑛𝑡 i.e., 

𝜇𝐿𝑈𝐵𝐼(ℎ𝑖) =  𝑚𝑖𝑛 (𝜇𝐹(𝑒𝑗 , ℎ𝑖),  𝜇𝐺(𝑒𝑗, ℎ𝑖)) , 𝑒𝑗 ∈ 𝐴 ∩ 𝐵, ℎ𝑖 ∈ 𝑈 

c)  𝜇𝐺𝐸𝐼(ℎ𝑖): Fuzzy degree of membership in GEI𝑖𝑛𝑡 i.e., 

𝜇𝐺𝐸𝐼(ℎ𝑖) = 𝑚𝑖𝑛(𝜇𝐹(𝑒𝑚, ℎ𝑖),  𝜇𝐺(𝑒𝑛, ℎ𝑖)), 𝑒𝑚 ∈ 𝐴, 𝑒𝑛 ∈ 𝐵 𝑠. 𝑡 𝑒𝑚, 𝑒𝑛 ∉ 𝐴 ∩ 𝐵, ℎ𝑖 ∈ 𝑈. 

Example 2: Soft-Fuzzy DCD-DM for Investment Selection 

Setup: Let the universe of alternatives be: 

𝑈 = {ℎ₁, ℎ₂, ℎ₃, ℎ₄}  (Investment projects) 

Let the evaluation parameters be: 

𝐸 = {𝑒₁: high return, 𝑒₂: low risk, 𝑒₃: high liquidity}. 

Two analysts evaluate the alternatives: 

Analyst 1 (Soft fuzzy Set (𝐹, 𝐴) with 𝐴 = {𝑒₁, 𝑒₂}): 

𝜇𝐹(𝑒1, ℎ1) = 0.9, 𝜇𝐹(𝑒1, ℎ4) = 0.8, 𝜇𝐹(𝑒2, ℎ3) = 0.7, 𝜇𝐹(𝑒2, ℎ4) = 0.9. 

Analyst 2 (Soft fuzzy Set (𝐺, 𝐵) with 𝐵 =  {𝑒2, 𝑒3}): 

𝜇𝐺(𝑒2, ℎ1) = 0.6, 𝜇𝐺(𝑒3, ℎ2) = 0.8, 𝜇𝐺(𝑒3, ℎ3) = 0.6 

First, compute fuzzy LUBI𝑖𝑛𝑡 and GEI𝑖𝑛𝑡 scores 

LUBI (Local Union of Binary Intersections): only 𝑒2 ∈ 𝐴 ∩ 𝐵, for each ℎ𝑖 ∈ 𝑈, define: 

𝜇𝐿𝑈𝐵𝐼(ℎ𝑖) =  𝑚𝑖𝑛(𝜇𝐹(𝑒2, ℎ𝑖),  𝜇𝐺(𝑒2, ℎ𝑖))  

Results: 

𝜇𝐿𝑈𝐵𝐼(ℎ1) = 𝑚𝑖𝑛(0,0.6) = 0, 𝜇𝐿𝑈𝐵𝐼(ℎ2) = 𝑚𝑖𝑛(0,0) = 0, 

𝜇𝐿𝑈𝐵𝐼(ℎ3) = 𝑚𝑖𝑛(0.7,0) = 0, 𝜇𝐿𝑈𝐵𝐼(ℎ4) = 𝑚𝑖𝑛(0.9,0) = 0. 

GEI (Global External Intersection): for mismatched parameters: (𝑒1, 𝑒3) 

𝜇𝐺𝐸𝐼(ℎ𝑖) = 𝑚𝑖𝑛(𝜇𝐹(𝑒1, ℎ𝑖),  𝜇𝐺(𝑒3, ℎ𝑖)) 

Results: 

𝜇𝐺𝐸𝐼(ℎ1) = 𝑚𝑖𝑛(0.9,0) = 0,  𝜇𝐺𝐸𝐼(ℎ2) = 𝑚𝑖𝑛(0,0.8) = 0 

𝜇𝐺𝐸𝐼(ℎ3) = 𝑚𝑖𝑛(0,0.6) = 0, 𝜇𝐺𝐸𝐼(ℎ4) = 𝑚𝑖𝑛(0.8,0) = 0 
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Both LUBI and GEI return zero values, indicating the absence of valid intersections. In such cases, fuzzy 

relaxation is applied by replacing intersections with fuzzy unions combined with appropriate weighting. 

Fuzzy unions are computed in place of intersections to ensure continuity in decision-making. For each 

ℎ𝑖 ∈ 𝑈: 

𝜇𝐿𝑈𝐵𝐼(ℎ𝑖) = 𝑚𝑎𝑥(𝜇𝐹(𝑒2, ℎ𝑖),  𝜇𝐺(𝑒2, ℎ𝑖)) 

𝜇𝐺𝐸𝐼(ℎ𝑖) = 𝑚𝑎𝑥(𝜇𝐹(𝑒1, ℎ𝑖),  𝜇𝐺(𝑒3, ℎ𝑖)) 

LUBI (Fuzzy union for 𝑒2): 

𝜇𝐿𝑈𝐵𝐼(ℎ1) = 𝑚𝑎𝑥(0,0.6) = 0.6, 𝜇𝐿𝑈𝐵𝐼(ℎ2) = 𝑚𝑎𝑥(0,0) = 0 

𝜇𝐿𝑈𝐵𝐼(ℎ3) = 𝑚𝑎𝑥(0.7, 0) = 0.7, 𝜇𝐿𝑈𝐵𝐼(ℎ4) = 𝑚𝑎𝑥(0.9,0) = 0.9 

GEI (Fuzzy union for 𝑒1, 𝑒3): 

𝜇𝐺𝐸𝐼(ℎ1) =  𝑚𝑎𝑥(0.9, 0) =  0.9, 𝜇𝐺𝐸𝐼(ℎ2) = 𝑚𝑎𝑥(0,0.8) = 0.8 

𝜇𝐺𝐸𝐼(ℎ3) =  𝑚𝑎𝑥(0, 0.6) =  0.6,  𝜇𝐺𝐸𝐼(ℎ4) = 𝑚𝑎𝑥(0.8,0) = 0.8 

Next, compute final fuzzy score (w₁ = w₂ = 0.5) 

𝛿(ℎ𝑖) =  0.5 · 𝜇𝐿𝑈𝐵𝐼(ℎ𝑖) +  0.5 · 𝜇𝐺𝐸𝐼(ℎ𝑖) 

𝒉𝒊 𝝁𝑳𝑼𝑩𝑰(𝒉𝒊) 𝝁𝑮𝑬𝑰(𝒉𝒊) 𝛿(ℎ𝑖) 

ℎ1 0.6 0.9 0.75 

ℎ2 0 0.8 0.4 

ℎ3 0.7 0.6 0.65 

ℎ4 0.9 0.8 0.85 

Then, Ranking Result: The top-ranked alternative is ℎ4, followed by ℎ1, ℎ3, and ℎ2, making ℎ4 the most 

recommended choice.  

The proposed fuzzy-soft extension of the DCD-DM model offers several practical advantages. By avoiding 

degenerate outcomes such as empty decision sets, it ensures that meaningful recommendations can always 

be generated. Furthermore, the introduction of fuzzy consensus scores enables nuanced ranking of 

alternatives, providing decision-makers with confidence levels rather than binary outputs. This capability is 

especially valuable in environments characterized by ambiguity and partial information. However, the 

model's effectiveness relies on the accurate calibration of fuzzy membership values, which may introduce 
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subjectivity or variability. Additionally, selecting appropriate weights 𝑤1 and 𝑤2 for combining local and 

global consensus remains a subjective task that could influence final outcomes. Finally, the fuzzy extension 

introduces increased computational complexity compared to its crisp counterpart, which may limit scalability 

in large-scale decision systems. 

7. Discussion and Conclusion 

The DCD-DM model presents a mathematically grounded and operationally flexible approach to decision 

making, integrating dual consensus strategies to harness both localized and global agreement structures. By 

embedding soft-fuzzy set theory within the DCD-DM framework, the methodology achieves enhanced 

expressiveness, permitting fine-grained control over uncertainty and confidence levels in multi-criteria 

environments. This fusion of binary intersection logic with soft-fuzzy reasoning demonstrates superior 

adaptability in complex decision spaces. Future research may explore its extension to dynamic or real-time 

decision systems, optimization scenarios, and broader AI-based inference engines. 
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