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ABSTRACT: Continuity is one of most important concepts in many mathematical disciplines. In 

some situations, general notion of continuity is replaced by sequential continuity.  

 In this paper we introduce and study the concepts of β-open set, β-continuous functions, then we 

also study the concepts of β-compact subsets and study some new notion of the neutrosophic β-

compact space, neutrosophic simply 𝜷-open set, neutrosophic simply 𝜷-open cover, and 

neutrosophic simply 𝜷-compact, neutrosophic 𝜷- continuous function, neutrosophic 𝜷𝒈- continuous 

in neutrosophic topological spaces, and we present some definitions, properties, examples that 

illustrate its properties.   

Keywords: Neutrosophic 𝜷-compact, Neutrosophic simply 𝜷-open set, Neutrosophic 𝜷𝒈- 

continuous, Neutrosophic 𝜷-continuous function.  

INTRODUCTION:  
      The importance of sequential continuity in mathematics and its applications in other sciences (such as 

computer science, information theory, biological science, dynamical systems and so on) is well known. 

 Abd El-Monsef et al. [2] introduced the notion of β-open sets and β-continuity in topologicalspaces. 

Generalized open sets play a very important role in General Topology and they are now the research topics of 

many topologists worldwide. Levine [10] introduced the notion of semi-open sets and semi-continuity in 

topological spaces. Andrijevic [3] introduced a class of generalized open sets in topological spaces. Mashhour 

[12] introduced preopen sets in topological spaces.  

Our goal in this paper is to extend these ideas to neutrosophic topological spaces. We introduce the 

neutrosophic 𝛽-compact, neutrosophic simply 𝛽-open set, neutrosophic 𝛽𝑔-continuous, neutrosophic 𝛽-

continuous function, and investigate some their properties.  

We use standard terminology and notations for neutrosophic set theory and the theory of neutrosophic 

topological spaces following mainly [18, 21]. 

1- PRELIMINARIES  

Definition 1.1 

      A subset 𝐴 of a topological space (𝑋, 𝜏) is called: 

1- Preopen [12] if 𝐴 ⊆ 𝑖𝑛𝑡(𝑐𝑙(𝐴)). 

2- Semi open [10] if 𝐴 ⊆ 𝑐𝑙(𝑖𝑛𝑡(𝐴)). 

3- Regular open [22] if 𝐴 = 𝑖𝑛𝑡(𝑐𝑙(𝐴)). 

4- 𝛽-open [1] if 𝐴 ⊂ 𝑐𝑙 (𝑖𝑛𝑡(𝑐𝑙(𝐴))). 

Definition 1.2 [𝟏, 𝟔] 

       A function 𝑓: 𝑋 ⟶ 𝑌 is called:  

1. semi continuous if 𝑓−1(𝑉) is semi open in 𝑋 for each open set 𝑉 of 𝑌. 
2. pre continuous if 𝑓−1(𝑉) is preopen in 𝑋 for each open set 𝑉 of 𝑌.  
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3. α -continuous if 𝑓−1(𝑉) is α - open in 𝑋 for each open set 𝑉 of 𝑌. 
4. b-continuous if 𝑓−1(𝑉) is b-open in 𝑋 for each open set 𝑉  of 𝑌. 
5. β-continuous if 𝑓−1(𝑉) is β -open in 𝑋 for each open set 𝑉  of 𝑌. 

Definition 1.3 [𝟏𝟏] 

      A topological space (𝑋, 𝜏) is called compact space if every open cover of 𝑋 has a finite sub cover.   
Theorem 1.1 [𝟏𝟏]  

      A closed sub set of a compact space is compact. 
Definition 1.4 [𝟔] 

      A space 𝑋 is called a 𝛽- compact space if each 𝛽- open cover of  𝑋 has a finite sub cover for 𝑋. 

Definition 1.5 [𝟏]   

  A function 𝑓: (𝑋, 𝜏) ⟶ (𝑌, 𝜎) is called 𝛽- open if 𝑓(𝐺) ∈ 𝛽𝑂(𝑌) for every 𝐺 ∈ 𝜏. 
Definition 1.6 [𝟏𝟏] 

      A topological space (𝑋, 𝜏) is called: 

Regular if for every 𝐴 ∈ 𝜏𝐶 , 𝑥 ∉ 𝐴 then there exist 𝑈, 𝑉 ∈ 𝜏, 𝑈 ∩ 𝑉 = ∅ such that 𝑥 ∈ 𝑈 & 𝐴 ⊂ 𝑉. 

Theorem 1.2 [𝟏𝟒]   

      For a topological space (𝑋, 𝜏) then the following statement are equivalent: 

1- 𝑋 is regular (resp. almost regular). 

2- For any closed set (resp. regular closed) set 𝐹 and each 𝑥 ∈ 𝑋 − 𝐹, there exist two disjoint open 𝑈 & 𝑉 such 

that 𝑥 ∈ 𝑈 & 𝐹 ⊂ 𝑉. 
3- For any open (resp. regular open) set 𝑉 containing 𝑥 in 𝑋 there exist an 𝑈 ∈ 𝜏𝛼  such that 𝑥 ∈ 𝑈 ⊂ 𝛼𝑐𝑙(𝐴) ⊂
𝑉. 

Definition 1.7 [𝟏] 

      Let 𝑓 be a function from a neutrosophic topological spaces (𝑋, 𝜏) and (𝑌, 𝑆) then 𝑓 is called: 

i- a neutrosophic open function if 𝑓(𝐴) is a neutrosophic open set in 𝑌 for every aneutrosophic open set 𝐴 in 

𝑋. 
ii- a neutrosophic 𝛼- open function if 𝑓(𝐴) is a neutrosophic 𝛼- open set in 𝑌 for every aneutrosophic open set 

𝐴 in 𝑋. 
iii- a neutrosophic preopen function if 𝑓(𝐴) is a neutrosophic preopen set in 𝑌 for every aneutrosophic open 

set 𝐴 in 𝑋. 
iv- a neutrosophic semiopen function if 𝑓(𝐴) is a neutrosophic semiopen set in 𝑌 for every aneutrosophic open 

set 𝐴 in 𝑋. 

Definition 1.8 [𝟏𝟔]        

      A 𝑁𝑆  𝐶 in 𝑁𝑇𝑆  𝒰 is so called a neutrosophic generalized closed set and denoted by 𝑁𝑔𝐶𝑆 if for any 

𝑁𝑔𝑂𝑆  𝑀 in 𝒰 such that  𝐶 ⊆ 𝑀, then 𝑁𝑐𝑙(𝐶) ⊆ 𝑀. Moreover, its complement is named a neutrosophic 

generalized open set referred to 𝑁𝑔𝑂𝑆. 

Definition 1.9  [𝟕] 
      Let (𝑋, 𝑓) be NTS and 𝐵 be a NS in 𝑋. Then neutrosophic generalized closure is defined as, 𝐺Ncl(𝐵) =
⋂{𝐺: 𝐺 𝑖𝑠 𝑎 𝐺𝑁𝐶𝑆 𝑖𝑛 𝑋 𝑎𝑛𝑑 𝐵 ⊆ 𝐺}. 
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Definition 1.10  [𝟕, 𝟏𝟗] 

      A map 𝑓: X ⟶ Y is said to be:  

i- neutrosophic closed (in short, NC-map) if the image of every NCS in X is a NCS in Y. 
ii- neutrosohic continuous (in short, N-continuous) if inverse image of every NCS in Y is a NCS in 𝑋. 
iii- generalized neutrosohic continuous (in short, 𝐺N-continuous) if inverse image of every NCS in Y is a 𝐺NCS 

in 𝑋. 
iv- generalized neutrosohic irresolute (in short, 𝐺N-irresolute) if inverse image of every 𝐺NCS in Y is a 𝐺NCS 

in 𝑋. 

Definition 1.11  [𝟏𝟓] 

      A bijective 𝑓: 𝑋 ⟶ 𝑌 is called a neutrosophic homeomorphism if  𝑓 & 𝑓−1 are  

neutrosophice continuous. 

Definition 1.12 [𝟗] 

      A bijective 𝑓: 𝑋 ⟶ 𝑌 is named as neutrosophic generalized homeomorphism (in short neutrosophic 𝑓-

homeomorphism) if 𝑓 & 𝑓−1 are 𝐺𝑁-continuous. 

Definition 1.13 [𝟗]         

      A mapping 𝜂: 𝑋 ⟶ 𝑌 is generalized neutrosophic open (in short, 𝐺𝑁𝑂-map) if  
 The image 𝜂(𝑅) is 𝐺𝑁𝑂𝑆 in 𝑌 for every 𝑁𝑂𝑆𝑅 in 𝑋.  

Definition 1.14 [𝟗]      

      A mapping 𝜂: 𝑋 ⟶ 𝑌 is generalized neutrosophic closed (in short, 𝐺𝑁𝐶-map) if the image 

𝜂(𝑄) is 𝐺𝑁𝐶𝑆 in 𝑌 for every 𝑁𝐶𝑆𝑄 in 𝑋. 

Proposition 1.1 [𝟗]      

      Every 𝑁𝐶-mapping is a 𝐺𝑁𝐶-mapping. 

Proposition 1.2 [𝟗]           

      A map 𝜂: 𝑋 ⟶ 𝑌 is a 𝐺𝑁𝐶-mapping if the image of each 𝑁𝑂𝑆 in 𝑋 is 𝐺𝑁𝑂𝑆 in 𝑌. 

Proposition 1.3 [𝟗]      

      Let 𝜇: 𝑋 ⟶ 𝑌 and 𝜆: 𝑌 ⟶ 𝑍 be 𝑁𝑇𝑆𝑠, then the following hold. 

i- If (𝜆 ∘ 𝜇) is 𝐺𝑁𝑂-map and 𝜇 is 𝑁-continuous, then 𝜆 is 𝐺𝑁𝑂-map.  

ii- If (𝜆 ∘ 𝜇) is 𝐺𝑁𝑂-map and 𝜇 is 𝐺𝑁-continuous, then 𝜆 is 𝐺𝑁𝑂-map.  

Definition 1.15 [𝟏𝟕]               

      Let (𝒰, 𝜁) and (𝒱, 𝜎) be 𝑁𝑇𝑆𝑠 and 𝜂: (𝒰, 𝜁) ⟶ (𝒱, 𝜎) be a mapping we have:  

i- if for each 𝑁𝑂𝑆 (correspondingly, 𝑁𝐶𝑆) 𝐾 in 𝒱, 𝜂−1(𝐾) is neutrosophic  

continuous and denoted by 𝑁-continuous [20]. 
ii- if for each 𝑁𝑂𝑆(correspondingly, 𝑁𝐶𝑆) 𝐾 in 𝒱, 𝜂−1(𝐾) is a 𝑁 − 𝛼𝑂𝑆 (correspondingly, 𝑁 − 𝛼𝐶𝑆) in 𝒰, 
then 𝜂 is known as neutrosophic 𝛼-continuous and referred to 𝑁 − 𝛼-continuous [4] . 
iii- if for each 𝑁𝑂𝑆(correspondingly, 𝑁𝐶𝑆) 𝐾 in 𝒱, 𝜂−1(𝐾) is a 𝑁 − 𝑔𝑂𝑆 (correspondingly, 𝑁 − 𝑔𝐶𝑆) in 𝒰, 
then 𝜂 is known as neutrosophic 𝑔-continuous and signified by 𝑁 − 𝑔-continuous [8] . 
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Definition 1.16  [𝟏𝟕]               

      Let 𝜂 be a function on 𝑁𝑇𝑆 𝒰 and valued in 𝑇𝑆 𝒱, then we named 𝜂 as aneutrosophic generalized 𝛼𝑔-

continuous and shortly wrote it as 𝑁𝑔𝛼𝑔- continuous if for each 𝑁𝐶𝑆 𝐾 in 𝒱, , 𝜂−1(𝐾) is a 𝑁𝑔𝛼𝑔𝐶𝑆 in 𝒰. 

Definition 1.17 [𝟓] 

    Let 𝑓 be a function from a neutrosophic topological space (𝑋, 𝜏1) to neutrosophic topological space (𝑌, 𝜏2). 
Then 𝑓 is called a neutrosophic pre continuous function if 𝑓−1(𝐵) is a neutrosophic preopen in 𝑋 for every 

neutrosophic open set 𝐵 in 𝑌. 

2- NEAR COMPACTNESS and CONTINUITY   

      In this section we shall state some types of compact spaces and their properties.  

Definition 2.1 

1- A neutrosophic topological space (𝑋, 𝜏) is called a neutrosophic 𝛽-compact if every neutrosophic 𝛽-open 

cover of 𝑋 has a finite subcover. 

2- A neutrosophic topological space (𝑋, 𝜏) is called a neutrosophic simply 𝛽- 

compact space if every neutrosophic simply 𝛽-open cover of 𝑋 has a finite sub-cover.  

Definition 2.2                

      A neutrosophic subset 𝐴 of (𝑋, 𝜏) is said to be a neutrosophic simply 𝛽- compact set relative to 𝑋 if every 

neutrosophic simply 𝛽-open cover of 𝐴 has a finite sub cover. 

Definition 2.3    

      Let 𝑓 be a function from a neutrosophic topological space (𝑋, 𝜏1) to a neutrosophic topological space 
(𝑌, 𝜏2) then 𝑓 is called: 

i- a neutrosophic open function if 𝑓(𝐴) is a neutrosophic open set in 𝑌 for every aneutrosophic open set 𝐴 in 

𝑋. [5]      
ii- a neutrosophic 𝛽-open function if 𝑓(𝐴) is a neutrosophic 𝛽-open set in 𝑌 for every aneutrosophic open set 

𝐴 in 𝑋. 

Theorem 2.1       

i- Every neutrosophic 𝛽-compact space is a neutrosophic simply 𝛽-compact space. 

ii- Every neutrosophic simply 𝛽-compact space is a neutrosophic compact space. 

Proof: 

i- Suppose that (𝑋, 𝜏) is a neutrosophic 𝛽-compact space. Let 𝐵 = {𝑈𝛾} be a  neutrosophic 𝛽-open cover of 𝑋. 

We need to find a countable subcover of 𝐵 that covers 𝑋. Since (𝑋, 𝜏) is a neutrosophic 𝛽-compact space, there 

exist a finite subcover 𝐵~ = {𝑈𝛾1
, 𝑈𝛾2

, 𝑈𝛾3
, . . . , 𝑈𝛾𝑛

} of 𝐵 that covers 𝑋. We can construct a countable of 𝐵 by 

adding each 𝑈𝛾𝑖
 for 𝑖 = 1,2,3, . . . 𝑛, to countable set 𝑆.  

Therefore, 𝑆 = {𝑈𝛾1
, 𝑈𝛾2

, 𝑈𝛾3
, . . . , 𝑈𝛾𝑛

} is a countable subcover of 𝐵 that covers 𝑋. Hence, every neutrosophic 

𝛽-compact space is a neutrosophic simply 𝛽-compact space. 
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ii- Let 𝑋 be a simply 𝛽-compact space, and suppose that {𝑈𝛾} is an open cover of 𝑋. By the definition of 

neutrosophic simply 𝛽-compact for every open set 𝑈 and closed set 𝑉 such that 𝑈 ∩ 𝑉 = ∅, there exists an 

open set 𝐵 such that 𝑈 ⊆ 𝐵 & 

𝐵 ∩ 𝑉 = ∅. Now, let define a finite subset {𝑈𝛾1
, 𝑈𝛾2

, 𝑈𝛾3
, . . . , 𝑈𝛾𝑛

} such that it covers 𝑋. By the definitions of 

compactness and neutrosophic simply ,  , there exist a finite subcover for every open cover. This, 𝑋 is 

compact, 𝑋 satisfies the neutrosophic simply 𝛽 propers. 

Finally, by satisfying both neutrosophic simply 𝛽 and compactness properties, it can be concluded that every 

neutrosophic simply 𝛽-compact space is a neutrosop- hic compact space.               

Theorem 2.2         

i- If 𝑓: (𝑋, 𝜏1) ⟶ (𝑌, 𝜏2) is a neutrosophic 𝛽-open function and (𝑌, 𝜏2) is a neutrosophic 𝛽-compact space, 

then (𝑋, 𝜏1) is also a neutrosophic compact space. 

ii- If 𝑓: (𝑋, 𝜏1) ⟶ (𝑌, 𝜏2) is a neutrosophic simply 𝛽-open function and (𝑌, 𝜏2) is a neutrosophic simply 𝛽-

compact space, then (𝑋, 𝜏1) is also a neutrosophic 𝛽-compact space. 

Proof 
i- Suppose that 𝑓: (𝑋, 𝜏1) ⟶ (𝑌, 𝜏2) is a neutrosophic 𝛽-open function, and (𝑌, 𝜏2) is a neutrosophic 𝛽-

compact space, we will use the concept of a neutrosophic open cover. Let 𝐵 = {𝑈𝑖} be a neutrosophic open 

cover of (𝑋, 𝜏1). Since 𝑓 is a neutrosophic 𝛽-open function, for every 𝑈𝑖 in 𝐵, the 𝑓−1( 𝑈𝑖) is 𝛽- open in (𝑋, 𝜏1). 
Now, suppose the collection 𝑈 = { 𝑓−1( 𝑈𝑖): 𝑈𝑖 ∈ 𝐶}. Since  𝑓 is a function from (𝑋, 𝜏1) to (𝑌, 𝜏2), 𝑈 is a 

collection of subset of  𝑋. Since 𝐵 is a neutrosophic open cover of (𝑋, 𝜏1), it follows that 𝑈 is a collection of 

𝛽-open sets in (𝑋, 𝜏1). Since (𝑌, 𝜏2) is a neutrosophic 𝛽-compact space, there exists a finite subcover  

𝑈∼ = { 𝑓−1( 𝑈1),  𝑓−1( 𝑈2),  𝑓−1( 𝑈3), . . . ,  𝑓−1( 𝑈𝑛) } of 𝑈 that covers 𝑋. 
Now, let 𝐵∼ = { 𝑈1, 𝑈2, 𝑈3, . . . , 𝑈𝑛} be the corresponding finite subcover of 𝐵. Since 𝑈∼ is a finite subcover of 

𝑈, it follows that 𝐵∼is a finite subcover of 𝐵. Hence (𝑋, 𝜏1) is a neutrosophic compact space. 

ii- The proof of this part is similar to the above part (ii). 

Theorem 2.3         

i- If 𝑓: (𝑋, 𝜏1) ⟶ (𝑌, 𝜏2) is a neutrosophic 𝛽-continuous function, then for each neutrosophic 𝛽-compact set 

𝑈 in 𝑋, 𝑓(𝑈) is a neutrosophic simply 𝛽-compact set in 𝑌. 

ii- If 𝑓: (𝑋, 𝜏1) ⟶ (𝑌, 𝜏2) is a neutrosophic 𝛽-continuous function, then for each neutrosophic 𝛽-compact set 

𝐾 in 𝑋, 𝑓(𝐾) is a neutrosophic compact set in 𝑌. 

Proof 

i- Suppose that 𝑓: (𝑋, 𝜏1) ⟶ (𝑌, 𝜏2) is a neutrosophic 𝛽-continuous function, and 𝑈 is a neutrosophic 𝛽-

compact set in 𝑋, since 𝑓 is a neutrosophic 𝛽-continuous function for every 𝛽-open set 𝑉 in 𝑌, the 𝑓−1(𝑉) is 

𝛽-open in 𝑋. Now, suppos the collection 𝐷 = {𝑓−1(𝑉): 𝑉 𝑖𝑠 𝑎 𝛽 − open set in 𝑌}. This collection 𝐷 consists 

of 𝛽-open sets in 𝑋. Since 𝑈 is a neutrosophic 𝛽-compact set relative to 𝑋, there exists a finite subcover, 

𝐷∼ = { 𝑓−1( 𝑉1), 𝑓( 𝑉2),  𝑓−1( 𝑉3), . . . ,  𝑓−1( 𝑉𝑛) } of 𝐷 that covers 𝑈. Now, let 𝐶∼ = {𝑉1, 𝑉2, 𝑉3, . . . , 𝑉𝑛 } be the 

corresponding finite subcovew of 𝐶. It follows that 𝑓(𝑈) is covered by the finite subcover 𝐶∼, which mesns 

𝑓(𝑈) is a neutrosophic simply 𝛽- compact set in 𝑋. 
ii- Proof this a part similar to i. 
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Proposition 2.1          

      Let (𝑋, 𝜏1), (𝑌, 𝜏2) & (𝑍, 𝜏3) be three neutrosophic topological spaces, let  

𝑓: (𝑋, 𝜏1) ⟶ (𝑌, 𝜏2) and 𝑔: (𝑌, 𝜏2) ⟶ (𝑍, 𝜏3) be functions. If 𝑓 is neutrosophic open and 𝑔 is neutrosophic 𝛽-

open then 𝑔 ∘ 𝑓 is neutrosophic 𝛽-open. 

Proof 

     Suppose that, 𝑓 is a neutrosophic open, 𝑔 is neutrosophic 𝛽- open and prove a composition function 𝑔 ∘ 𝑓 

is neutrosophic 𝛽-open. Let 𝐴 be a neutrosophic 𝛽-open set in (𝑍, 𝜏3). By the definition of neutrosophic 𝛽-

open set, we can represent 𝐴 as 𝐴 = 𝑁𝛽(𝐴~), where 𝐴~ is a regular open set in (𝑍, 𝜏3). Since 𝑔 is neutrosophic 

𝛽- open, we have 𝑔−1(𝐴~) is a neutrosophic 𝛽-open set in (𝑌, 𝜏2). 

Suppose that (𝑔 ∘ 𝑓)−1(𝐴) = 𝑓−1(𝑔−1(𝐴)). Since 𝑓 is a neutrosophic open function, then 𝑓−1(𝑔−1(𝐴)) is a 

neutrosophic open set in (𝑋, 𝜏1). Therefore, 𝑔 ∘ 𝑓 is neutrosophic 𝛽-open. 

Proposition 2.2 

      Let (𝑋, 𝜏1) and (𝑌, 𝜏2) are neutrosophic topological spaces. If 

 𝑓: (𝑋, 𝜏1) ⟶ (𝑌, 𝜏2) is a neutrosophic 𝛽-open then it is neutrosophic semi open. 

Proof 

      Suppose that 𝑓 is a neutrosophic 𝛽-open function, and let 𝑈 be a neutrosophic open set in (𝑌, 𝜏2). By 

definition of a neutrosophic open set 𝑈 can be represented as 𝑈 = 𝑁𝛽(𝐵), where 𝐵 is a regular open set in 

(𝑌, 𝜏2).  
Since 𝑓 is a neutrosophic 𝛽- open function, we know that 𝑓−1(𝐵) is a neutrosophic 𝛽-open set in (𝑋, 𝜏1) for 

any regular open set 𝐵 in (𝑌, 𝜏2).  
In particular, since 𝐵 is a regular open set, we know that 𝑓−1(𝐵) is a neutrosophic 𝛽- open set in (𝑋, 𝜏1). 
It is clear that, 𝑓−1(𝐵) is a subset of 𝑓−1(𝑈). Since neutrosophic 𝛽-open sets are closed under subsets, we can 

conclude that 𝑓−1(𝐵) is a neutrosophic semi- open set in (𝑋, 𝜏1). So, we have shown that for every neutrosophic 

open set 𝑈 in (𝑌, 𝜏2), 𝑓−1(𝑈), is a neutrosophic semi- open set in (𝑋, 𝜏1).  
Therefore, 𝑓−1 is a neutrosophic semi-open function. 

Proposition 2.3 

      Let (𝑋, 𝜏1) and (𝑌, 𝜏2) are neutrosophic topological spaces. If 

 𝑓: (𝑋, 𝜏1) ⟶ (𝑌, 𝜏2) is a neutrosophic 𝛽-open then it is neutrosophic preopen. 

Proof 

       The proof is similar to the previous theorem above.      
Definition 2.4 

      Let 𝑓 be a function from a neutrosophic topological space (𝑋, 𝜏1) to a neutros- 

ophic topological space (𝑌, 𝜏2), then 𝑓 is called a neutrosophic 𝛽-continuous funct- ion if 𝑓−1(𝑈) is a 

neutrosophic 𝛽-open set in 𝑋 for every neutrosophic open set 𝑈 in 𝑌.  

Proposition 2.4 

     Let 𝑓 a function from a neutrosophic topological space (𝑋, 𝜏1) to a neutrosophic topological space (𝑌, 𝜏2), 
satisfies the condition:  
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 𝑁𝑐𝑙 (𝑁𝑖𝑛𝑡 (𝑁𝑐𝑙(𝑓−1(𝑈)))) ⊆ 𝑓−1(𝑁𝑐𝑙(𝑈)) for every neutrosophic set 𝑈 in 𝑌. Then 𝑓 is a neutrosophic 𝛽-

continuous function. 

Proof 

      Suppose that 𝑓 satisfies the given condition, and let 𝑈 be a neutrosophic set in 𝑌. By the definition of a 

neutrosophic set, 𝑈 can be represented as  

𝑈 = 𝑁𝑖𝑛𝑡(𝑁𝑖𝑛𝑡(𝑈)). Now, using the given condition, we have 

 𝑁𝑐𝑙 (𝑁𝑖𝑛𝑡(𝑁𝑐𝑙𝑓−1(𝑈))) ⊆ 𝑓−1(𝑁𝑐𝑙(𝑈)). Since 𝑈 = 𝑁𝑖𝑛𝑡(𝑁𝑖𝑛𝑡(𝑈)), we can substitute 𝑈 in the above 

expression to get: 

𝑁𝑐𝑙 (𝑁𝑖𝑛𝑡 (𝑁𝑐𝑙 (𝑓−1 (𝑁𝑖𝑛𝑡(𝑁𝑖𝑛𝑡(𝑈)))))) ⊆ 𝑓−1 (𝑁𝑐𝑙 (𝑁𝑖𝑛𝑡(𝑁𝑖𝑛𝑡(𝑈))))  

Now, observe that 𝑁𝑐𝑙 (𝑁𝑖𝑛𝑡 (𝑁𝑐𝑙 (𝑓−1 (𝑁𝑖𝑛𝑡(𝑁𝑖𝑛𝑡(𝑈)))))) is a closed set in 𝑋. Therefore, we have: 

𝑁𝑖𝑛𝑡 (𝑁𝑖𝑛𝑡 (𝑓−1 (𝑁𝑐𝑙 (𝑁𝑖𝑛𝑡(𝑁𝑖𝑛𝑡(𝑈)))))) ⊆ 𝑓−1 (𝑁𝑐𝑙 (𝑁𝑖𝑛𝑡(𝑁𝑖𝑛𝑡(𝑈)))).    

This implies that 𝑓−1 (𝑁𝑖𝑛𝑡(𝑁𝑖𝑛𝑡(𝑈))) is a neutrosophic 𝛽-open set in 𝑋.  

Since 𝑁𝑖𝑛𝑡(𝑁𝑖𝑛𝑡(𝑈)) = 𝑈, we can conclude that 𝑓−1(𝑈) is a neutrosophic 𝛽- open set in 𝑋. Therefore, 𝑓 is a 

neutrosophic 𝛽-continuous function. 

Proposition 2.5 

    Let 𝑓 be a function from a neutrosophic topological space (𝑋, 𝜏1) to neutrosophc 

topological space (𝑌, 𝜏2). If 𝑓 is neutrosophic 𝛽-continuous, then itis neutrosophic semi-continuous. 
Proof 

      Suppose that 𝑓 is neutrosophic 𝛽-continuous, and let 𝑈 be a neutrosophic open set in 𝑌. By the definition 

of a neutrosophic open set, 𝑈 can be represented as 

𝑈 = 𝑁𝛽(𝐵), where 𝐵 is a regular open set in 𝑌. 

Since 𝑓 is a neutrosophic 𝛽- continuous function, then for every regular open set 𝐵 in 𝑌, if 𝑥 ∈ 𝑓−1(𝐵),  then 

there exists a regular open set 𝐶 in 𝑋 such that 𝑥 ∈ 𝐶 & 𝑓(𝐶) ⊆ 𝐵.    
Now, consider that 𝑥 is any point in 𝑓−1(𝑈), since 𝑥 ∈ 𝑓−1(𝑈), we know 

that 𝑓(𝑥) ∈ 𝑈, such that 𝑈 = 𝑁𝛽(𝐵), then there exist a regular open set 𝐶 in 𝑋 such that 𝑥 ∈ 𝐶  and 𝑓(𝐶) ⊆ 𝐵. 

Therefore, we can choose 𝐶 as a regular open neighborhood of 𝑥 contained in 𝑓−1(𝑈). Thus  𝑓−1(𝑈) is 

neutrosophic semi- open set in 𝑋. Therefore, 𝑓 is a neutrosophic semi- continuous function. 

Proposition 2.6 

    Let 𝑓 be a function from a neutrosophic topological space (𝑋, 𝜏1) to neutrosophic topological space 

(𝑌, 𝜏2). If 𝑓 is neutrosophic 𝛽-continuous, then it is neutrosophic pre-continuous. 

Proof 

      Assume that 𝑓 is neutrosophic 𝛽-continuous and let 𝑈 be a neutrosophic pre- 

open set in 𝑌. By definition of a neutrosophic preopen set, 𝑈 can be represented as 𝑈 = 𝑁𝛽(𝐵), where 𝐵 is a 

regular closed set in 𝑌.   
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Since 𝑓 is a neutrosophic 𝛽-continuous function, then we have 

𝑁𝑐𝑙 (𝑁𝑖𝑛𝑡 (𝑁𝑐𝑙(𝑓−1(𝐵)))) ⊆ 𝑓−1(𝑁𝑐𝑙(𝐵)), for every regular closed set 𝐵 in 𝑌, since 𝑈 = 𝑁𝛽(𝐵) so that 

𝑁𝑐𝑙 (𝑁𝑖𝑛𝑡 (𝑁𝑐𝑙(𝑓−1(𝐵)))) ⊆ 𝑓−1 (𝑁𝑐𝑙 (𝑁𝛽(𝐵))), i.e. 

𝑁𝑐𝑙 (𝑁𝑖𝑛𝑡 (𝑁𝑐𝑙(𝑓−1(𝐵)))) ⊆ 𝑓−1(𝑁𝑐𝑙(𝐵)). Since 𝑁𝑐𝑙 (𝑁𝛽(𝐵)) = 𝐵, we have     

𝑁𝑐𝑙 (𝑁𝑖𝑛𝑡 (𝑁𝑐𝑙 (𝑓−1 (𝑁𝛽(𝐵))))) ⊆ 𝑓−1(𝐵). This implies that 𝑓−1 (𝑁𝛽(𝐵)) is a subset of 𝑓−1(𝐵). So that 

𝑁𝑖𝑛𝑡(𝑓−1(𝐵)) is a neutrosophic open set in 𝑋. Since 𝑓−1 (𝑁𝛽(𝐵)) ⊆ 𝑁𝑖𝑛𝑡(𝑓−1(𝐵)), then 𝑓−1 (𝑁𝛽(𝐵)) is a 

neutrosophic semi-open set in 𝑋. 

Finally, since neutrosophic semi-open sets are closed under complemente, we can conclude that 

(𝑓−1 (𝑁𝛽(𝐵)))
𝐶

, is a neutrosophic semi-open set in 𝑋. 

Since (𝑓−1 (𝑁𝛽(𝐵)))
𝐶

= 𝑓−1(𝑁𝑐𝑙(𝐵)), then 𝑓−1(𝑁𝑐𝑙(𝐵)) is a neutrosophic semi open set in 𝑋. Therefore, 

𝑓 is a neutrosophic pre-continuous function. 

Result 2.1 

      Every neutrosophic simply 𝛽-continuous function from a 𝑁𝑇𝑆 (𝑋, 𝜏1) to a 𝑁𝑇𝑆 (𝑌, 𝜏2) is not a 

neutrosophic 𝛽-continuous function in general.   

Example 2.1 

      Let 𝑋 = {0,1} with the discrete topology 𝜏1 = {∅, {0}, {1}, {0,1}}. Let  

 𝑌 = {0,1} with the discrete topology 𝜏2 = {∅, {0,1}}. 

Now let us define a function 𝑓: (𝑋, 𝜏1) ⟶ (𝑌, 𝜏2) as follows (0) = 0 ,  𝑓(1) = 1. 

This function is not a 𝑁𝛽-continuous function because for every 𝑁𝛽-open set 𝐵 in (𝑌, 𝜏2), 𝑓−1(𝐵) may not be 

a 𝑁𝛽-open set in (𝑋, 𝜏1). Since if 𝐵 = {0}, 

 𝑓−1(𝐵) = {0} which is not a 𝑁𝛽-open set in (𝑋, 𝜏1). Therefore, 𝑓 is not a 𝑁𝛽-continuous function. 

3- Neutrosophic Generalized 𝜷𝒈- Continuous Function  

      In this part of this paper, the neutrosophic generalized 𝛽𝑔-continuous function are performed and 

examined their fundamental features. 

Definition 3.1               

      Let 𝑓 be a function from a neutrosophic topological space 𝑋 to a topological space 𝑌, then we called 𝑓 is 

aneutrosophic generalized 𝛽𝑔-continuous (𝑁𝑔𝛽𝑔-continuous) if for each neutrosophic closed set 𝐵 in 

𝑌, 𝑓−1(𝐵) is a 𝑁𝑔𝛽𝑔 𝐶𝑆 in 𝑋. 
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Theorem 3.1          

      If 𝑓: (𝑋, 𝜏1) ⟶ (𝑌, 𝜏2) is a neutrosophic simply 𝛽-continuous mapping and  𝑔: (𝑌, 𝜏2) ⟶ (𝑍, 𝜏3) is a 

neutrosophic continuous mapping, then the composition mapping, 𝑔 ∘ 𝑓: (𝑋, 𝜏1) ⟶ (𝑍, 𝜏3) is a neutrosophic 

simply 𝛽-continuous mapping. 

Proof  

      Let 𝑉 be a neutrosophic 𝛽-open set in (𝑍, 𝜏3). Since 𝑔 is a neutrosophic 𝛽- continuous mapping, we 

know that (𝑓)−1(𝑔)−1(𝑉) is a neutrosophic 𝛽-open set in (𝑋, 𝜏1). Appling the property of inverse images, 

we have  

(𝑔 ∘ 𝑓)−1(𝑉) = (𝑓)−1(𝑔)−1(𝑉). Therefore, (𝑔 ∘ 𝑓)−1(𝑉) is a neutrosophic 𝛽- open set in (𝑋, 𝜏1). This 

proves that the composition mapping 

𝑔 ∘ 𝑓: (𝑋, 𝜏1) ⟶ (𝑍, 𝜏3) is a neutrosophic simply 𝛽-continuous mapping.  

Definition 3.2          

      Let 𝑓: (𝑋, 𝜏1) ⟶ (𝑌, 𝜏2) be a map so as 𝑋 and 𝑌 are neutrosophic topological spaces, then: 

i- 𝑓 is called a neutrosophic 𝛽𝑔-continuous (𝑁𝛽𝑔-continuous) if for every 𝑁𝑂𝑆 

(correspondingly, 𝑁𝐶𝑆) 𝐾 in 𝑌, 𝑓−1(𝐾) is a 𝑁𝛽𝑔𝑂𝑆 (correspondingly,  𝑁𝛽𝑔𝐶𝑆) in 𝑋. 

ii- 𝑓 is called a neutrosophic 𝑔β-continuous (𝑁𝑔𝛽-continuous) if every 𝑁𝑂𝑆 (correspondingly, 𝑁𝐶𝑆) 𝐾 in 

𝑌, 𝑓−1(𝐾) is a 𝑁𝑔𝛽𝑂𝑆 (correspondingly 𝑁𝑔𝛽𝐶𝑆) in 𝑋. 

Theorem 3.2      

      Let 𝑓 be a function from a 𝑁𝑇𝑆 𝑋 to a 𝑇𝑆 𝑌, so we have the following:  

i- All neutrosophic generalized continuous (𝑁𝑔-continuous) functions are neutrosophic 𝛽-

generalized continuous (𝑁𝛽𝑔-continuous). 

ii- All neutrosophic 𝛽-continuous (𝑁𝛽-continuous) functions are neutrosophic generalized 𝛽-continuous 

(𝑁𝑔𝛽-continuous). 

iii- All neutrosophic generalized 𝛽-continuous (𝑁𝑔𝛽-continuous) functions are neutrosophic 𝛽-generalized 

(𝑁𝛽𝑔-continuous). 

Proof 

i- All 𝑁𝑔-continuous functions are 𝑁𝛽𝑔-continues. 

    Suppose that 𝑓: 𝑋 ⟶ 𝑌 be an 𝑁𝑔-continuous function, where 𝑋 is a neutrosophic topological space and  𝑌 

is a topological space.  

We need to show that for every 𝑁𝛽𝑔-open set 𝐵 in 𝑌, the 𝑓−1(𝐵) is an 𝑁𝛽𝑔-open set in 𝑋.  

Since 𝐵 is 𝑁𝛽𝑔-open, it can be represented as 𝐵 = 𝑁𝛽𝑔(𝐵~), where 𝐵~ is a regular open set in 𝑌. 
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Now, since 𝑓 is 𝑁𝑔-continuous, we have 𝑓−1(𝐵~) is 𝑁𝑔-open in 𝑋. Since 𝑁𝑔-open sets are 𝑁𝛽𝑔-open, 

𝑓−1(𝐵~) is also 𝑁𝛽𝑔-open in 𝑋. Since 𝑁𝛽𝑔(𝐵~) = 𝐵, we can conclude that 𝑓−1(𝐵) is 𝑁𝛽𝑔-open in 𝑋. 

Therefor, 𝑓 is 𝑁𝛽𝑔 -continuous. 

ii- All 𝑁𝛽-continuous functions are 𝑁𝑔𝛽-continues. 

Proof this a part similar to i. 

iii- All 𝑁𝑔𝛽-continuous functions are 𝑁𝛽𝑔-continuous. 

Proof this a part similar to i. 

Theorem 3.3  

      Let 𝑓 be a function from a neutrosophic topological space 𝑋 to a topological space 𝑌, then 𝑓 is a 𝑁𝑔𝛽𝑔-

continuous function iff for each neutrosophic open set  
(𝑁𝑂𝑆) 𝑉 in 𝑌, 𝑓−1(𝑉) is a neutrosophic generalized 𝛽-generalized open set (𝑁𝑔𝛽𝑔𝑂𝑆) in 𝑋. 

Proof 

⟹ Suppose that 𝑓 is an 𝑁𝑔𝛽𝑔-continuous function and let 𝑉 be a 𝑁𝑂𝑆 in 𝑌. 

 We need to show that 𝑓−1(𝑉) is 𝑁𝑔-open and 𝑁𝛽𝑔-open in 𝑋. Since 𝑓 is 𝑁𝑔𝛽𝑔-continuous, it is also 𝑁𝑔-

continuous. This implies that for each 𝑁𝑔-open set 𝑉 in 𝑌, 𝑓−1(𝑉) is a 𝑁𝑔-open set in 𝑋.  

Now, by the definition of a 𝑁𝑂𝑆, 𝑉 can be represented as 𝑉 = 𝑁𝑔 (𝑁𝛽𝑔(𝑉~)), where 𝑉~ is a regular open set 

in 𝑌. Since 𝑓 is 𝑁𝑔𝛽𝑔- continuous, for any 𝑁𝛽𝑔-open set 𝐵 in 𝑌, we have 𝑓−1(𝐵) is a 𝑁𝑔𝛽𝑔-open set in 𝑋.  

In particular, for 𝐵 = 𝑁𝑔 (𝑁𝛽𝑔(𝑉~)), we have 𝑓−1 (𝑁𝑔 (𝑁𝛽𝑔(𝑉~))) is 𝑁𝑔𝛽𝑔-open set in 𝑋. Also, observe 

that 𝑓−1 (𝑁𝑔 (𝑁𝛽𝑔(𝑉~))) is a subset of 𝑓−1(𝑉). This implies that 𝑓−1(𝑉) is 𝑁𝑔𝛽𝑔- open set in 𝑋. Therefore, 

we have shown that 𝑓−1(𝑉) is both 𝑁𝑔-open and 𝑁𝛽𝑔-open in 𝑋. So it is a 𝑁𝑔𝛽𝑔-open set in 𝑋.  

⟸ Suppose that for each 𝑁𝑂𝑆  𝑉 in 𝑌, 𝑓−1(𝑉) is a 𝑁𝑔𝛽𝑔-open set in 𝑋,  

Let 𝐵 be a 𝑁𝑔𝛽𝑔-open set in 𝑌. By the definition of 𝑁𝑔𝛽𝑔-open sets, 𝐵 can be represented as 

 𝐵 = 𝑁𝑔 (𝑁𝛽𝑔(𝐵~)), where 𝐵~ is a regular open set in 𝑌. Since 𝐵~ is regular open, it is a 𝑁𝑂𝑆. Hence, we 

have 𝑓−1(𝐵~) is a 𝑁𝑔𝛽𝑔-open set in 𝑋.  

Since 𝑁𝑔𝛽𝑔-OS is a subset of 𝑁𝛽𝑔- OS and 𝑁𝑔- OS, we have 𝑓−1(𝐵~) is also a 𝑁𝛽𝑔-OS and 𝑁𝑔-OS in 𝑋.  

This implies that 𝑓−1(𝐵~) contains a 𝑁𝑔𝛽𝑔-open set, and thus it is a 𝑁𝑔𝛽𝑔-open set in 𝑋. Hence, we have 

shown that for each 𝑁𝑔𝛽𝑔-open set 𝐵 in 𝑌, 𝑓−1(𝐵) is a 𝑁𝑔𝛽𝑔- open set in 𝑋. Therefore, 𝑓 is a 𝑁𝑔𝛽𝑔-

continuous function.  
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Proposition 3.1   

      For all 𝑁𝑔𝛽𝑔-continuous functions are 𝑁𝑔𝛽-continuous.  

Proof 

      Suppose that 𝑓: (𝑋, 𝜏1) ⟶ (𝑌, 𝜏2) is 𝑁𝑔𝛽𝑔-continuous, let 𝐵 be a 𝑁𝛽-open set in 𝑌. Since 𝐵 is 𝑁𝛽-open, 

it can be represented as 𝐵 = 𝑁𝛽(𝐵~), where 𝐵~ is a regular open set in 𝑋, and since 𝑓 is 𝑁𝑔𝛽𝑔-continuous, 

we know that for every 𝑁𝑔𝛽𝑔-open set 𝐶 in 𝑌, 𝑓−1(𝐶), is 𝑁𝑔𝛽𝑔-open in 𝑋 . 

In particular, for 𝐵~, which is a regular open set and thus a 𝑁𝑔𝛽𝑔-open set, we have that 𝑓−1(𝐵~) is 𝑁𝑔𝛽𝑔-

open in 𝑋.  

Since we observe that 𝑓−1(𝐵~) is a subset of 𝑓−1(𝐵), 𝑁𝑔𝛽𝑔-open sets are subsets of 𝑁𝑔𝛽- open sets, we can 

conclude that 𝑓−1(𝐵~) is also 𝑁𝑔𝛽- open in 𝑋, then for every 𝑁𝛽-open set 𝐵 in 𝑌, the 𝑓−1(𝐵~) is 𝑁𝑔𝛽-open 

in 𝑋. Therefore for all 𝑁𝑔𝛽𝑔- continuous functions are 𝑁𝑔𝛽-continuous. 

Remark 3.1 

      The reverse of the previous proposition is not valid as shown in the next example. 

Example 3.1 

      Let, 𝑋 = {𝑎, 𝑏, 𝑐}, & 𝑌 = {1,2}, 𝑓: 𝑋 ⟶ 𝑌 be a function defined as 𝑓(𝑎) = 1, 𝑓(𝑏) = 1, & 𝑓(𝑐) = 2.  

Now, let, 𝑔: [0,1] ⟶ 𝑋, such that 𝑔(𝑡) = 𝑎, for  0 ≤ 𝑡 < 0.5, and 𝑔(𝑡) = 𝑏, for 0.5 ≤ 𝑡 < 1. 

In this case, 𝑔 is a 𝑁𝑔𝛽 on 𝑋, and it is continuous, in the sense that the inverse image of any neutrosophic 

crisp open set in 𝑌 under the composition 𝑓 ∘ 𝑔 is a neutrosophic crisp open set in [0,1]. 

However, the function 𝑓 is not continuous in the generalized case.  

If we consider a 𝑁𝑔𝛽 on [0,1], denoted as 𝛿: [0,1] ⟶ 𝑌, such that 𝛿(𝑡) = 1, for 0 ≤ 𝑡 < 0,5 and 𝛿(𝑡) = 2, 

for 0.5 ≤ 𝑡 < 1, then the neutrosophic 𝛿 ∘ 𝑓 is not a neutrosophic crisp generalized continuous function on  

𝑋.  

Definition 3.3 

      Let 𝑓 be a function from a neutrosophic topological space 𝑋 to a topological space 𝑌, then 𝑓 is called a 

neutrosophic generalized 𝛽𝑔-irresolute and wrote it as 𝑁𝑔𝛽𝑔- irresolute if for each 𝑁𝑔𝛽𝑔𝐶𝑆 𝑉 in 𝑌, 𝑓−1(𝑉) 

is a 𝑁𝑔𝛽𝑔𝐶𝑆 in 𝑋. 

Theorem 3.4 

      Let 𝑓 be a function from a neutrosophic topological space 𝑋 to a topological space 𝑌, then 𝑓 is a 𝑁𝑔𝛽𝑔-

irresolute function iff for each 𝑁𝑔𝛽𝑔𝑂𝑆 𝑈 in 𝑌, 𝑓−1(𝑈) is a 𝑁𝑔𝛽𝑔𝑂𝑆 in 𝑋. 

Proof 

⟹ Suppose that 𝑓 is 𝑁𝑔𝛽𝑔-irresolute. Let 𝑈  be a 𝑁𝑔𝛽𝑔𝑂𝑆 in 𝑌, by the definition of  

a 𝑁𝑔𝛽𝑔𝑂𝑆, 𝑈 can be represented as 𝑈 = 𝑁𝑔 (𝑁𝑔𝛽(𝑈~)), where 𝑈~ is a regular open set in 𝑌. 
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Now, since 𝑓 is 𝑁𝑔𝛽𝑔-irresolute, we know that for every 𝑁𝑔𝛽𝑔-open set 𝐵 in 𝑌, the 𝑓−1(𝐵), is 𝑁𝑔𝛽𝑔-open in 

𝑋. 

In particular, for 𝑈~, which is a regular open set and thus a 𝑁𝑔𝛽𝑔-open set in 𝑌, we have that 𝑓−1(𝑈~) is 

𝑁𝑔𝛽𝑔-open in 𝑋. 

Now, since 𝑓−1(𝑈~) is a subset of 𝑓−1(𝑈), and since any 𝑁𝑔𝛽𝑔-open sets are subsets of 𝑁𝑔𝛽𝑔, we can 

conclude that 𝑓−1(𝑈~) is also a 𝑁𝑔𝛽𝑔𝑂𝑆 in 𝑋.  

Therefore, 𝑓−1(𝑈), is a 𝑁𝑔𝛽𝑔𝑂𝑆 in 𝑋.  

⟸ Suppose that for each 𝑁𝑔𝛽𝑔𝑂𝑆 𝑈 in 𝑌, 𝑓−1(𝑈) is a 𝑁𝑔𝛽𝑔𝑂𝑆 in 𝑋, and let 𝑈 be a 𝑁𝑔𝛽𝑔-open set in 𝑌. By 

the definition of a 𝑁𝑔𝛽𝑔-open set, 𝑈 can be represented as 𝑈 = 𝑁𝑔 (𝑁𝛽𝑔(𝑈~)), where 𝑈~ is a regular open 

set in 𝑌. c 

Now, sine  𝑓−1(𝑈~) is a 𝑁𝑔𝛽𝑔𝑂𝑆 in 𝑋, and any 𝑁𝑔𝛽𝑔𝑂𝑆 is a subset of 𝑁𝑔𝛽𝑔-open sets, we have that 𝑓−1(𝑈~) 

is also 𝑁𝑔𝛽𝑔-open in 𝑋, it is observe that 𝑓−1(𝑈~) is a subset of 𝑓−1(𝑈). Hence, 𝑓−1(𝑈) is a 𝑁𝑔𝛽𝑔-open in 𝑋. 

Therefore, 𝑓 is a 𝑁𝑔𝛽𝑔- irresolute function. 

Proposition 3.2 

      For all 𝑁𝑔𝛽𝑔-irresolute function is 𝑁𝑔𝛽-continuous. 

Proof 

      Suppose that 𝑓 is 𝑁𝑔𝛽𝑔-irresolute from the space 𝑋 into a space 𝑌, and let 𝑉 be a 𝑁𝛽-open set in 𝑌, 

We need to show that 𝑓 is a 𝑁𝑔𝛽-continuous mapping that if a function 𝑓 is a 𝑁𝛽 -open set 𝑉  in 𝑌, the 

𝑓−1(𝑉) is a 𝑁𝑔𝛽 in 𝑋. 

Now since 𝑉 is 𝑁𝛽-open, so we can represent it as 𝑉 = 𝑁𝛽(𝑉~), where 𝑉~ is a regular open set in 𝑌, and 

since 𝑓 is 𝑁𝑔𝛽𝑔-irresolute, so for every 𝑁𝑔𝛽𝑔 OS 𝐵 in 𝑌, the 𝑓−1(𝐵), is a 𝑁𝑔𝛽𝑔 OS in 𝑋.  

In particular, for 𝑉~, which is a regular open set and thus a 𝑁𝑔𝛽𝑔 OS, we have that 𝑓−1(𝑉~) is a subset 

of  𝑓−1(𝑉). Therefore, 𝑓−1(𝑉) contains a 𝑁𝑔𝛽𝑔 OS 𝑓−1(𝑉~) and thus, it is 𝑁𝑔𝛽-open in 𝑋. Therefore, 𝑓 is 

a 𝑁𝑔𝛽 -continuous.          

Remark 3.2 

      The subsequent example explains that the inverse of the above proposition does not true in 

general case.   

Example 3.2 

      Suppose that 𝑋 = {𝑎, 𝑏, 𝑐}, 𝑌 = {1,2}, and let 𝑓: 𝑋 ⟶ 𝑌 be a function defined as 𝑓(𝑎) = 1, 𝑓(𝑏) =

1, & 𝑓(𝑐) = 2.  

Now, let us define a 𝑁𝑔𝛽 𝑋, defined as: 

𝑔: [0,1] ⟶ 𝑋, such that 𝑔(𝑡) = 𝑎, for  0 ≤ 𝑡 < 0.5, and 𝑔(𝑡) = 𝑏, for 0.5 ≤ 𝑡 < 1. 
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In this case, 𝑔 is a 𝑁𝑔𝛽 on 𝑋, and it is continuous in the case that the inverse image of any neutrosophic 

crisp open set in 𝑌 under the composition 𝑓 ∘ 𝑔 is a neutrosophic crisp open set in [0,1]. However, if we 

suppose that 𝐵 = {2}, is a 𝑁𝑔𝛽𝑔 closed set in 𝑌, then 𝑓−1(𝐵) = {𝑐}, and 𝐵 is not a 𝑁𝑔𝛽𝑔 closed set in 𝑋.  

Example 3.3 

      Suppose that 𝑓: ℝ ⟶ ℝ, where ℝ is the set of real numbers, let 

 𝑓(𝑥) = {
𝑥   𝑖𝑓   𝑥 ≤ 0
0    𝑖𝑓   𝑥 > 0

.  

In this example if 𝑥 = 0 so 𝑓(𝑥) is a discontinuous function, and if 𝑥 ≤ 0 or 𝑥 > 0  then, 𝑓(𝑥) is the 

identity function and continuous. However, when 𝑥 is greater than 0, 𝑓(𝑥) is a constant function with a 

value of  0, causing a jump discontinuity at 𝑥 = 0.  

Now, let define a 𝑁𝑔𝛽 as a function 𝑔(𝑥) that is continuously varying from its lower bound to its upper 

bound. 

In this case, let the function 𝑔(𝑥) defined as  𝑔(𝑥) = {
−1   𝑓𝑜𝑟   𝑥 ≤ 0
  1  𝑓𝑜𝑟    𝑥 ≥ 0

.  

In this example, 𝑔(𝑥) is a𝑁𝑔𝛽 function that is continuously varying from −1 𝑡𝑜 1 as 𝑥 increases from 

negative in finity to positive infinity. The function 𝑓(𝑥) is a continuous but does not a 𝑁𝑔𝛽𝑔-irresolute 

function.   

Conclusions 

      In this paper, we present the concepts of neutrosophic 𝛽-open cover, neutronso- sophic 𝛽-

compactness neutrosophic simply 𝛽-open cover, and neutrosophic simply 

𝛽-compactness in neutrosophic topological spaces. Also, we prove some properties and theorems on 

neutrosophic 𝛽-compactness and neutrosophic simply 𝛽-compac- 

tness, and gives some remarks, examples. 

Finally, we can extend the concepts of 𝛽 -neutrosophic by connectednees.    
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