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Abstract: With regard to the dynamics of a coupled harmonic oscillators ground and coherent state are 

explored. The approach is focused on solving for the time evolution operator and then applying it to a 

tensor product of a ground and coherent state representing a physical system and environment respectively. 

The coherent state is then partially traced to extract the dynamics of the ground state. The time evolution 

operator is found by solving a series of eleven coupled differential equations. Also, this study will discuss 

how to optimize the parameter of coupled harmonic oscillators to generate arithmetic motion for one leg 

with two degrees of freedom by using a genetic algorithm (GA). The results demonstrate that a change in 

coupling results in a change in the evolution of the ground state.  
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1. Introduction 

One of the most important topics is locomotion of robots, which is widely discussed recently. In biological systems, as many 

researches are shown that, a number of various patterns occur which are produced by a central nervous system such as, running, 

walking, swimming and crawling. The central nervous system is called Central Pattern Generator (CPG) and here this study, we 

will use couple harmonic oscillators instead of CPGs. According to these researches these CPGs or oscillators  are exited or cited 

in the locals of the spinal cord as shown by some researches [1], [2], [3] and[4] .  

Biologically, CPGs can be defined as inspired networks of nonlinear oscillating neurons capable of generating rhythmic patterns 

without higher control centres or sensory feedback [3] and [5]. A neural oscillator comprises a pair of neurons with inhibitive 

connections between them. Each neuron suppresses the other, which are a flexor and an extensor neuron [6].  

Various mathematical and physical structures of the legs and limbs have been modelled [7] and the control systems have been 

copied to reproduce patterns of movement in robots similar to those in certain biological organisms.  

Interestingly, various mathematical structures in the literature have modelled and mimicked biological control parameters [7]. 

Various CPG models, including the connectionist models, have been implemented in the robotic systems [8]. Also, there are  

some studies discussing how systems of oscillators can be coupled [9].  

we refer the reader to [10]. Some of these studies have been considered the Van der Pol and the Hopf oscillator. Others used 

different mathematical structures of CPGs to control bipedal locomotion.  

This paper mainly focuses on the analysis and optimization of the Couple harmonic oscillators in details for the purpose of 

locomotion. This paper draws on and derives support from the studies mentioned above and investigates how Couple harmonic 

oscillators can be optimized for one leg with two degree of freedoms DOFs  via an adaptation to the robotic systems that perform 

one leg movement. In particular, this paper investigates a nonlinear limit-cycle oscillator similar to those are discussed by [3], 

[11]. The mathematical analysis for the optimization of the CPG can be another novelty in this paper. Based on the cost function, 

this paper uses a developmental algorithm to find the optimum parametric values for couple harmonic oscillators. 

The paper is organized as follows: The kinematic model has been discussed in the next section. Couple harmonic oscillators are 

given in Section 3. In Section 4, the numerical solution is discussed. Section 5 is devoted to the optimization results. In Section 

6, some conclusions are drawn and suggestions for future research are given. 

2. Kinematic Modeling of One Leg 

In order to determine the kinematic attributes with the system behaviour while walking.  In the figure 1 illustrates how couple 

harmonic oscillators are used to produce rhythmic patterns for the hip and knee via one leg of a human when the lower body is 

parallel to the ground. It is worth mentioning here that the results obtained are contingent upon the manner in which CPGs are 

analyzed. 
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Figure 1: The Planar biped model when the lower body is parallel to the ground 

A closer look into the kinematics of the hip and knee angles in the swing phase reveals the following basic kinematics equations: 

From the joint between hip and knee, we have. The first coordinate (𝑥1, 𝑦1) yields  

    𝑥1 = 𝑥𝑑 + 𝐿1𝑐𝑜𝑠𝜃1    and     𝑦1 = 𝑦𝑑 + 𝐿1𝑠𝑖𝑛𝜃1. 

The second coordinate (𝑥2, 𝑦2) reveals that 

𝑥2 = 𝑥𝑑 + 𝐿1𝑐𝑜𝑠𝜃1 + 𝐿2𝑐𝑜𝑠𝜃2  
And 

  𝑦2 = 𝑦𝑑 + 𝐿1𝑠𝑖𝑛𝜃1 + 𝐿2𝑠𝑖𝑛𝜃2, 

where 𝑥𝑑 is the proceeding displacement (i.e., the distance during locomotion) and 𝑦𝑑 stands for the positive direction of the hip 

height at each step. 𝐿1 and 𝐿2, represent three lengths: from the hip joint to the knee joint, from the knee joint to the end effector, 

respectively. The angles, 𝜃1 and 𝜃2 which represent the hip and knee, respectively, will acquire their rhythmic patterns from 

Couple harmonic oscillators. With regard to 𝑦𝑑 , it is assumed to be zero when the lower body is parallel to the ground. The 

researchers in this study, however, fixed the hip joint in spite of the fact that the hip joint was not fixed when collecting real data. 

3. Couple harmonic oscillators and it analysis 

To discuss Equations of motion for forced vibration: - 

By considering the a viscously damped with two DOF (degree of freedom) spring mass system as shown in Figure 2, the Motion 

is described by 𝑥1 𝑎𝑛𝑑 𝑥2. Also, the 𝑚1 𝑎𝑛𝑑 𝑚2 are represented the mass system at any time 𝑡. 

 
Figure 2: Spring‐mass system 

Let us assume that there are two forces 𝐹1 𝑎𝑛𝑑 𝐹2 act on our model, by the Newton's second law of motion impact on the 

masses, we obtain 
𝑚1𝑥1̈ + (𝑐1 + 𝑐2)𝑥1̇ − 𝑐2𝑥2̇ + (𝑘1 + 𝑘2)𝑥1 − 𝑘2𝑥2 = 𝐹1
𝑚2𝑥2̈ − 𝑐2𝑥1̇ + (𝑐2 + 𝑐3)𝑥2̇ − 𝑘2𝑥1 + (𝑘2 + 𝑘3)𝑥2 = 𝐹2

}  (1) 

This system can be written as  

[𝑀]�̈� + [𝐶]�̇� + [𝐾]𝑋 = 𝐹 

Where, [𝑀] = [
𝑚1

0
     

0
𝑚2
] ,   [𝐶] = [

𝑐1 + 𝑐2
−𝑐2

     
−𝑐2
𝑐2 + 𝑐3

],  

[𝐾] = [
𝑘1 + 𝑘2
−𝑘2

     
−𝑘2

𝑘2 + 𝑘3
] , [𝑋] = [

𝑥1
𝑥2
] , [𝐹] = [

𝐹1
𝐹2
]  

Notice that 

The matrices are symmetric matrices 
[𝑀]𝑇 = [𝑀], [𝐶]𝑇 = [𝐶], [𝐾]𝑇 = [𝐾] 

 Analysis the system: 

(𝑥𝑏 ,𝑦𝑏) 

 

               Body 

 

 

                                                                                                         𝑥𝑑  
           𝜃1 

                                        
                                                                          𝐿1 

 
                                                                  (𝑥1 ,𝑦1) 
                                                                                      𝜃2 
                                                                                     

 
                                                             𝐿2 

 
                                            

(𝑥2 ,𝑦2)     
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When the system is an undamped at 𝑐1 = 𝑐2 = 𝑐3 = 0,  by setting 𝐹1 = 𝐹2 = 0 our system is reduced  

𝑚1𝑥1̈ + (𝑘1 + 𝑘2)𝑥1 − 𝑘2𝑥2 = 0

𝑚2𝑥2̈ − 𝑘2𝑥1 + (𝑘2 + 𝑘3)𝑥2 = 0
}                    (2) 

 

It is needed to find if both masses are oscillated harmonically with same frequency and phase angle with different amplitude.  

We may have harmonic solution 

𝑥1(𝑡) = 𝐴𝑐𝑜𝑠(𝜔𝑡 + ∅)

𝑥2(𝑡) = 𝐵𝑠𝑖𝑛(𝜔𝑡 + ∅)
}                                     (3) 

Where 𝐴 and 𝐵 are constants which denote amplitude of 𝑥1(𝑡) & 𝑥2(𝑡) respectively, 𝜔 is frequency and ∅ is phase angle. It is 

easily to show that eq (3) is solution of eq (2): by differentiate the system (3) we obtain System (4):  

((−𝑚1𝜔
2 + (𝑘1 + 𝑘2))𝑥1 − 𝑘2𝑥2) 𝑐𝑜𝑠(𝜔𝑡 + ∅) = 0)

(−𝑘2𝑥1 + (−𝑚2𝜔
2 + (𝑘2 + 𝑘3))𝑥2)𝑐𝑜𝑠(𝜔𝑡 + ∅) = 0

}    (4) 

The system (4) can be written  

(−𝑚1𝜔
2 + (𝑘1 + 𝑘2))𝑥1 − 𝑘2𝑥2 = 0

−𝑘2𝑥1 + (−𝑚2𝜔
2 + (𝑘2 + 𝑘3))𝑥2 = 0

}                                (5) 

The system (5) is algebraic homogenous equations, we have two unknow variable 𝑥1 & 𝑥2. One of the solutions is trivial solution 

𝑥1 =  𝑥2 = 0, For nontrivial solution of  𝑥1 & 𝑥2  the determinant of 𝑥1 & 𝑥2 coefficients must be zero 

|
−𝑚1𝜔

2 + (𝑘1 + 𝑘2)       −𝑘2
−𝑘2 −𝑚2𝜔

2 + (𝑘2 + 𝑘3)
| = 0 

(𝑚1𝑚2)𝜔
4 − {(𝑘1 + 𝑘2)𝑚2 + (𝑘2 + 𝑘3)𝑚1}𝜔

2 + {(𝑘1 + 𝑘2)(𝑘2 + 𝑘3) − 𝑘2
2} = 0     (6) 

When we solve for the frequency, the equation (6) is called characteristic equation has the following solution  

𝜔1
2, 𝜔2

2 =
1

2
{
(𝑘1 + 𝑘2)𝑚2 + (𝑘2 + 𝑘3)𝑚1

𝑚1𝑚2

} ±
1

2
[{
(𝑘1 + 𝑘2)𝑚2 + (𝑘2 + 𝑘3)𝑚1

𝑚1𝑚2

}

2

− 4{
(𝑘1 + 𝑘2)(𝑘2 + 𝑘3) − 𝑘2

2

𝑚1𝑚2

}]

1
2

(7) 

This is nontrivial harmonic solution when 𝜔 = 𝜔1 = 𝜔2, the Eq(5) is homogenous, the ratios 𝑟1 = 𝑥2/𝑥1 and 𝑟2 = 𝑥1/𝑥2 can 

be found by 𝜔2 = 𝜔1
2 = 𝜔2

2 , from Eq(5) and (7), we obtain 

𝑟1 =
𝑥2
𝑥1
=
−𝑚1𝜔1

2 + (𝑘1 + 𝑘2)

𝑘2
=

𝑘2

−𝑚2𝜔1
2 + (𝑘2 + 𝑘3)

 

𝑟2 =
𝑥1
𝑥2
=
−𝑚1𝜔2

2 + (𝑘1 + 𝑘2)

𝑘2
=

𝑘2

−𝑚2𝜔2
2 + (𝑘2 + 𝑘3)

 

Why we use ratios !! here just to mention we have four roots for Eq(5), according to that: the four solutions are  

𝑥1⃗⃗  ⃗ = (
𝑥11
𝑥12
) = (

𝐴𝑐𝑜𝑠(𝜔1𝑡 + ∅1)

𝑟1𝐴𝑐𝑜𝑠(𝜔1𝑡 + ∅1)
) 

𝑥2⃗⃗⃗⃗ = (
𝑥21
𝑥22

) = (
𝐵𝑐𝑜𝑠(𝜔2𝑡 + ∅2)

𝑟2𝐵𝑐𝑜𝑠(𝜔2𝑡 + ∅2)
) 

We have four independent solutions, which can be written as: 

𝑥1 = 𝑥11 + 𝑥12 = 𝐴𝑐𝑜𝑠(𝜔1𝑡 + ∅1) + 𝑟1𝐴𝑐𝑜𝑠(𝜔1𝑡 + ∅1) 
𝑥2 = 𝑥21 + 𝑥22 = 𝐵𝑐𝑜𝑠(𝜔2𝑡 + ∅2) + 𝑟2𝐵𝑐𝑜𝑠(𝜔2𝑡 + ∅2) 

To find 𝐴 and 𝐵 by using initial conditions. By assuming the positon and veolcity are equal to zero. 
Our case: 

𝑚1𝑥1̈ + 𝑏1𝑥1̇ + 𝑘1
′𝑥1 + 𝑘3𝑥2 = 0

𝑚2𝑥2̈ + 𝑏2𝑥2̇ + 𝑘2
′𝑥2 + 𝑘3𝑥1 = 0

} ⟹ 

𝑚1𝑥1̈ = −𝑏1𝑥1̇ − 𝑘1
′𝑥1 − 𝑘3𝑥2

𝑚2𝑥2̈ = −𝑏2𝑥2̇ − 𝑘2
′𝑥2 − 𝑘3𝑥1

}      ⟹ 
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𝑥1̈ = −
𝑏1
𝑚1

𝑥1̇ −
𝑘1
′

𝑚1

𝑥1 −
𝑘3
𝑚1

𝑥2

𝑥2̈ = −
𝑏2
𝑚2

𝑥2̇ −
𝑘2
′

𝑚2

𝑥2 −
𝑘3
𝑚2

𝑥1
}
 
 

 
 

       

If  𝑘1
′  & 𝑘2

′  are constants and Figure 3 is shown simulation block diagram. 

 
Figure 3: Simulation Model block diagram  

Let us suggest and revise the above system as:   

𝑚1𝑥1̈ + 𝑏1𝑥1̇ + 𝑘1
′𝑥1 + 𝑘3𝑥2 = 0

𝑚2𝑥2̈ + 𝑏2𝑥2̇ + 𝑘2
′𝑥2 + 𝑘3𝑥1 = 0

} ⟹ 

𝑚1𝑥1̈ = −𝑏1𝑥1̇ − 𝑘1
′𝑥1 − 𝑘3𝑥2

𝑚2𝑥2̈ = −𝑏2𝑥2̇ − 𝑘2
′ 𝑥2 − 𝑘3𝑥1

} ⟹ 

𝑥1̈ = −
𝑏1
𝑚1

𝑥1̇ −
𝑘1
′

𝑚1

𝑥1 −
𝑘3
𝑚1

𝑥2

𝑥2̈ = −
𝑏2
𝑚2

𝑥2̇ −
𝑘2
′

𝑚2

𝑥2 −
𝑘3
𝑚2

𝑥1
}
 
 

 
 

 

where 

(𝑘1 + 𝑘2) = 𝑘1
′  

(𝑘2 + 𝑘3) = 𝑘2
′  

To Find the numerical Solution, we need to reduce this system first order differential equations as: 

𝑦1 = 𝑥1 ⟹ 𝑦1̇ = 𝑦2 

𝑦2 = 𝑥1̇ ⟹ 𝑦2̇ = −
𝑏1
𝑚1

𝑦2 −
𝑘1
′

𝑚1

𝑦1 −
𝑘3
𝑚1

𝑦3 

𝑦3 = 𝑥2 ⟹ 𝑦3̇ = 𝑦4 

𝑦4 = 𝑥2̇ ⟹ 𝑦4̇ = −
𝑏2
𝑚2

𝑦4 −
𝑘2
′

𝑚2

𝑦3 −
𝑘3
𝑚2

𝑦1 

New system is given as    
𝑦1̇ = 𝑦2 

𝑦2̇ = −
𝑏1
𝑚1

𝑦2 −
𝑘1
′

𝑚1

𝑦1 −
𝑘3
𝑚1

𝑦3 

𝑦3̇ = 𝑦4 

𝑦4̇ = −
𝑏2
𝑚2

𝑦4 −
𝑘2
′

𝑚2

𝑦3 −
𝑘3
𝑚2

𝑦1 

𝑦1 = 2, 𝑦2 = 0, 𝑦3 = 1.5, 𝑦4 = 0, 
New, let us consider different cases for analysis numerical solution. 

First case: let us fixed 𝑚1 = 𝑚2 = 10, 𝑘1 = 140 ; 𝑘2 = 140; 𝑘3 = 140: 𝑏1 = 2√𝑚1𝑘1, and we also manipulate by changing 

𝑏2 = 0.1 ∗ 𝑏1. Numerical is as seen in the figure 4  
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Figure 4: The Output of 𝑥1 and 𝑥2  corresponding to 𝑚1 =  𝑚2 = 10, 𝑘1 = 140 ;  𝑘2 = 140; 𝑘3 = 140, 𝑏2 = 0.1 ∗ 𝑏1   

Note that, even if we play with both parameters 𝑏2 = 0.1 ∗ 𝑏1 by increasing the relation's value or decrease, we will get under 

damped. 

Second case: Let us assume again, 𝑚1 = 𝑚2 = 4, 𝑘1 = 120; 𝑘2 = 120; 𝑘3 = 120; 𝑏1 = 2√𝑚1𝑘1, and we also manipulate by 

changing 𝑏2 = 0.1 ∗ 𝑏1. Numerical is as seen in the figure 5. 

 
Figure: 5 The Output of 𝑥1 and 𝑥2  corresponding to 𝑚1 = 𝑚2 = 4, 𝑘1 = 120; 𝑘2 = 120; 𝑘3 = 120; 𝑏1 = 2√𝑚1𝑘1, 𝑏2 = 0.1 ∗

𝑏1   

Although, we start changing to parameters 𝑏2 = 0.1 ∗ 𝑏1 by increasing decreasing we obtain also under damped. 

Third case:  Let us consider, 𝑚1 = 𝑚2 = 2, 𝑘1 = 24; 𝑘2 = 24; 𝑘3 = 24; 𝑏1 = 2√𝑚1𝑘1,  we also manipulate by changing 

𝑏2 = 0.001 ∗ 𝑏1. Numerical is as seen in the figure 6. 

 

Figure 6: The output of 𝑥1 and 𝑥2  corresponding to 𝑚1 = 𝑚2 = 2, 𝑘1 = 24; 𝑘2 = 24; 𝑘3 = 24; 𝑏1 = 2√𝑚1𝑘1, 𝑏2 = 0.001 ∗

𝑏1 

Fourth case: Let us consider, 𝑚1 = 𝑚2 = 2.6, 𝑘1 = 30; 𝑘2 = 30; 𝑘3 = 24: 𝑏1 = 2√𝑚1𝑘1,  we also manipulate by changing 

𝑏2 = 0.001 ∗ 𝑏1.  The numerical is as seen in the figure 7. 
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Figure 7: The Output of 𝑥1 and 𝑥2  corresponding to 𝑚1 =  𝑚2 = 2.6, 𝑘1 = 30; 𝑘2 = 30; 𝑘3 = 24: 𝑏1 = 2√𝑚1𝑘1, 𝑏2 =

0.001 ∗ 𝑏1 

Although, we give both parameters 𝑏2 and 𝑏1  different values by increasing decreasing we obtain just under damped in the third 

and fourth cases. 

Fifth case: Let us suppose, 𝑚1 = 𝑚2 = 1.5, 𝑘1 = 1800; 𝑘2 = 1800; 𝑘3 = 1800: 𝑏1 = 2√𝑚1𝑘1,  we also manipulate by 

changing 𝑏2 = 0.001 ∗ 𝑏1. Numerical is as seen in the figure 8. 

 
Figure 8:  The output of 𝑥1 and 𝑥2  corresponding to 𝑚1 = 𝑚2 = 1.5, 𝑘1 = 1800; 𝑘2 = 1800; 𝑘3 = 1800 and 𝑏1 = 2√𝑚1𝑘1,  
𝑏2 = 0.001 ∗ 𝑏1. 

Although, we give both parameters 𝑏2 and 𝑏1  different values by increasing decreasing we obtain just under damped in this 

case. 

Final case: Let us consider 𝑚1 =  𝑚2 = 4, 𝑘1 = 60; 𝑘2 = 60; 𝑘3 = 60: 𝑏1 = 2√𝑚1𝑘1, we also manipulate by changing 𝑏2 =

0.001 ∗ 𝑏1. Numerical is as seen in the figure 9.  

 

Figure 9: The output of 𝑥1 and 𝑥2  corresponding to 𝑚1 = 𝑚2 = 4, 𝑘1 = 60; 𝑘2 = 60; 𝑘3 = 60: 𝑏1 = 2√𝑚1𝑘1, 𝑏2 = 0.001 ∗

𝑏1 
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We have to draw the conclusion about Critical diminished oscillation and supercritical oscillation and which are affected by the 

parameters 𝑏1 and 𝑏2. 

The two parameters 𝑏1 and 𝑏2 are Damping constant that describes the strength of damping forces are called the damping canstant 

uses to determine the following  

 Under damped oscillations: Damping constant <1 

 Critically damped oscillations: Damping constant = 1 

 Over damped oscillations: Damping constant >1 

 Where the damping constant  𝑏1 = 2√𝑚1𝑘1. 

Remarks: 

1- The larger value of  𝑏, the more quickly  the amplitude decreases. 

2- The frequency 𝜔
′
= √

𝑘

𝑚
−

𝑏2

4𝑚2, is no longere qual the 𝜔
′
= √

𝑘

𝑚
  

3-  𝜔
′
 becomes zero, 𝑏 becomes so large.  

4-  when: 
𝑘

𝑚
−

𝑏2

4𝑚2 = 0 ⇒ 𝑏 = 2√𝑚𝑘 is condition for critical damp.  

5-  if 𝑏 is greaat than 2√𝑚𝑘  is condition of overdamp.  

6-  if 𝑏 is less than 2√𝑚𝑘  is condition of underdamp.  
From the previous results we obtain the under damp, we could not get both citical and over damp, as a result of that we shhould 

go in new scenario as: If 𝑚1 = 𝑚2 = 7, 𝑘1 = 60; 𝑘2 = 60; 𝑘3 = 60; also 𝑏1 = 2√𝑚1𝑘1, 𝑏2 = 0.9 ∗ 𝑏1. Numerical is as seen 

in the figure 10 

 

Figure 10:  The output of 𝑥1 and 𝑥2  corresponding to 𝑚1 = 𝑚2 = 7, 𝑘1 = 60; 𝑘2 = 60; 𝑘3 = 60: 𝑏1 = 2√𝑚1𝑘1, 𝑏2 = 0.9 ∗

𝑏1 

4. OTIMIZATION RESULTS 

It is important to mention here that each harmonic oscillator of couple produces angular patterns as outputs for each joint. For 

estimating gait generation, it is very important to compute the optimal parameter sets for each harmonic oscillator. Of course, it 

is necessary to know how the angular position of both joints will change in time for generating rhythmic patterns. The parameter 

sets in the case {𝑚1, 𝑏1, 𝑘1, 𝑚2, 𝑏2, 𝑘2, k3}. The (GA) will be used to find the values of the parameters that optimize the objective 

function given below. The different walking patterns rely on this cost function: 

𝐽 = −𝑎1∑𝑥𝑏(𝑘)

𝑛

𝑘=1

+ 𝑎2 (∑(𝜃1
2(𝑘) + 𝜃2

2(𝑘))

𝑛

𝑘=1

) /𝑁,    (8) 

We assume that 𝑎1, 𝑎2 ∈ [0,1] and 𝑎1 + 𝑎2 = 1, 𝑛 is the number of elements of the position vector that is establishing patterns 

in order to maximize the displacement or velocity, and 𝑁 is the length of time. When 𝑎2 = 0,  the energy consumption is ignored; 

hence, the displacement is maximized  

The two constraints revealed here are 0 ≤ 𝜃1,  𝜃2 ≤ 𝜋 due to physical reasons. In the present study, a hybrid function is used 

during the optimization process which runs after the GA terminates for improving the value of the fitness function. A hybrid 

function is a combination of two or more optimization algorithms that work together to improve the overall performance of the 

optimization process. In this case, the hybrid function uses a genetic algorithm (GA) and another optimization algorithm, which 

is run after the GA has completed its search. The GA is a search algorithm that is inspired by the process of natural selection. It 

uses a population of candidate solutions that undergo selection, crossover, and mutation to produce new candidate solutions that 

are hopefully better than the previous ones. The GA is a powerful optimization technique that can efficiently search for the global 
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optimum in complex and multi-dimensional search spaces. After the GA has completed its search, the hybrid function runs 

another optimization algorithm to further refine the solution. The specific optimization algorithm used in the hybrid function 

will depend on the problem being solved and the characteristics of the search space. Some common optimization algorithms that 

can be used in a hybrid function include local search algorithms, simulated annealing, and particle swarm optimization. The idea 

behind using a hybrid function is that the GA can efficiently explore the search space and find a good solution, but it may not be 

able to converge to the global optimum. By using another optimization algorithm in conjunction with the GA, the hybrid function 

can refine the solution and potentially converge to the global optimum. This can result in faster and more accurate optimization 

results. Locomotion can be achieved with the couple harmonic oscillators, as shown in Figs 11, 12, 13 and 14.  

 
Figure 11: Animation of one leg for Couple harmonic oscillators: This animation corresponds to the values𝑚1 = 𝑚2 = 4, 𝑘1 =
60; 𝑘2 = 60; 𝑘3 = 60: 𝑏1 = 30.9839, 𝑏2 = 0.31. 

 
Figure 12: Angles against time: This solution corresponds to the same values in Figure 11. 

 

Figure 13: Displacement against time: This solution corresponds to the same values in Figure 11. 
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Figure 13: Peak surface against time: This solution corresponds to the same values in Figure 11. 

5. CONCLUSIONS 

This paper focuses on optimizing couple harmonic oscillators, the results show far greater compare with other studies. The couple 

harmonic oscillators produce the best performance level under damping case, which we obtain limit cycle. The results of the 

study warrant broader future applications of to continue research in different neural oscillators. These results are important, then 

not only because of what they may contribute to the ongoing discussion of locomotion but also for to see how to can use these 

results in upper body. 
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